This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329164 #34 Aug 01 2025 11:05:36 %S A329164 1,23,322,495,3407,8113,28893,139708,716182,2497092,5130198,5761777, %T A329164 7315173,13194622,145995245,201544467,417649822,566513637,833667068, %U A329164 2266818768,4710228962,5186737183,5192311957,7454170028,9853412390,11817808908 %N A329164 Let P1, P2, P3, P4 be consecutive primes, with P2-P1=P4-P3=2. a(n)=(P1+P2)/12 when P3-P2 sets a new record. %C A329164 Position of record gaps with no primes bounded by consecutive pairs of twin primes. The length of the corresponding record gaps (P3-P1)/6 is given by A329165. %C A329164 In the neighborhood of a(15), the growth of this sequence seems to change notably. See the plot2 graph in the links. Does this signify anything important? - _Peter Munn_, Aug 01 2025 %H A329164 Tomáš Brada and Natalia Makarova, <a href="/A329164/b329164.txt">Table of n, a(n) for n = 1..58</a> %H A329164 Peter Munn, <a href="https://oeis.org/plot2a?name1=A329164&name2=A000045&tform1=log+base+10&tform2=log+base+10&shift=5&radiop1=ratio&drawlines=true">Plot2 graph of sequence against Fibonacci growth</a> %e A329164 Values of P1, P2, P3, P4 corresponding to record gaps: %e A329164 P3-P1 P1 P2 P3 P4 a(n) %e A329164 6 5 7 11 13 (5+7)/12 = 1 %e A329164 12 137 139 149 151 (137+139)/12 = 23 %e A329164 18 1931 1933 1949 1951 (1931+1933)/12 = 322 %e A329164 30 2969 2971 2999 3001 (2969+2971)/12 = 495 %o A329164 (PARI) p1=3;p2=5;p3=7;r=0;forprime(p4=11,1e9,if(p2-p1==2&&p4-p3==2,d=p3-p2;if(d>r,r=d;print1((p1+p2)/12,", ")));p1=p2;p2=p3;p3=p4) %Y A329164 Cf. A053778, A329158, A329159, A329160, A329161, A329165. %K A329164 nonn %O A329164 1,2 %A A329164 _Hugo Pfoertner_, Nov 07 2019