This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329185 #26 Apr 08 2024 18:52:57 %S A329185 1,1,2,5,10,22,49,105,227,494,1071,2322,5038,10927,23699,51405,111498, %T A329185 241837,524546,1137742,2467761,5352577,11609747,25181550,54618807, %U A329185 118468250,256957750,557341615,1208874523,2622050045,5687229162,12335605733,26755941146 %N A329185 Number of ways to tile a 2 X n grid with dominoes and L-trominoes such that no four tiles meet at a corner. %C A329185 a(n) <= A052980(n). %H A329185 Peter Kagey, <a href="/A329185/b329185.txt">Table of n, a(n) for n = 0..2500</a> %H A329185 Misha Lavrov, <a href="https://math.stackexchange.com/a/3426264/121988">Number of ways to tile a room with I-Shaped and L-Shaped Tiles</a>, Mathematics Stack Exchange. %H A329185 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,3,-1,2). %F A329185 a(n) = 2*a(n-1) - a(n-2) + 3*a(n-3) - a(n-4) + 2*a(n-5), with a(0) = a(1) = 1, a(2) = 2, a(3) = 5, and a(4) = 10. %F A329185 G.f.: (1 - x)*(1 + x^2) / (1 - 2*x + x^2 - 3*x^3 + x^4 - 2*x^5). - _Colin Barker_, Nov 12 2019 %e A329185 For n=3, the five tilings are: %e A329185 +---+---+---+ +---+---+---+ %e A329185 | | | | | | | %e A329185 + + + + + +---+---+ %e A329185 | | | | | | | %e A329185 +---+---+---+, +---+---+---+, %e A329185 +---+---+---+ +---+---+---+ %e A329185 | | | | | | %e A329185 +---+---+ + + +---+ + %e A329185 | | | | | | %e A329185 +---+---+---+, +---+---+---+, and %e A329185 +---+---+---+ %e A329185 | | | %e A329185 + +---+ + %e A329185 | | | %e A329185 +---+---+---+. %e A329185 For n=4, the only tiling counted by A052980(4) that is not counted by a(4) is %e A329185 +---+---+---+---+ %e A329185 | | | %e A329185 +---+---+---+---+ %e A329185 | | | %e A329185 +---+---+---+---+. %t A329185 LinearRecurrence[{2, -1, 3, -1, 2}, {1, 1, 2, 5, 10}, 50] (* _Paolo Xausa_, Apr 08 2024 *) %o A329185 (PARI) Vec((1 - x)*(1 + x^2) / (1 - 2*x + x^2 - 3*x^3 + x^4 - 2*x^5) + O(x^30)) \\ _Colin Barker_, Nov 12 2019 %Y A329185 A052980 is the analogous problem without the "four corners" restriction. %K A329185 nonn,easy %O A329185 0,3 %A A329185 _Peter Kagey_, Nov 07 2019