This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329219 #22 Apr 27 2024 18:09:46 %S A329219 1,7,8,1,7,9,7,4,3,6,2,8,0,6,7,8,6,0,9,4,8,0,4,5,2,4,1,1,1,8,1,0,2,5, %T A329219 0,1,5,9,7,4,4,2,5,2,3,1,7,5,6,3,2,0,8,0,6,7,6,7,5,1,3,9,8,4,5,0,3,8, %U A329219 6,1,6,0,6,6,3,1,5,2,4,9,8,5,2,7,5,0,5,1,5,3,4 %N A329219 Decimal expansion of 2^(10/12) = 2^(5/6). %C A329219 2^(10/12) is the ratio of the frequencies of the pitches in a minor seventh (e.g., D4-C5) in 12-tone equal temperament. %H A329219 Wikipedia, <a href="https://en.wikipedia.org/wiki/Equal_temperament#Comparison_with_Just_Intonation">Equal temperament</a> %H A329219 Wikipedia, <a href="https://en.wikipedia.org/wiki/Twelfth_root_of_two">Twelfth root of two</a> %H A329219 <a href="/index/Mu#music">Index entries for sequences based on music</a> %F A329219 Equals 2/A010768. %F A329219 Equals Product_{k>=0} (1 + (-1)^k/(6*k + 1)). - _Amiram Eldar_, Jul 25 2020 %e A329219 1.78179743... %t A329219 First[RealDigits[2^(5/6), 10, 100]] (* _Paolo Xausa_, Apr 27 2024 *) %o A329219 (PARI) default(realprecision, 100); 2^(10/12) %Y A329219 Frequency ratios of musical intervals: %Y A329219 Perfect unison: 2^(0/12) = 1.0000000000 %Y A329219 Minor second: 2^(1/12) = 1.0594630943... (A010774) %Y A329219 Major second: 2^(2/12) = 1.1224620483... (A010768) %Y A329219 Minor third: 2^(3/12) = 1.1892071150... (A010767) %Y A329219 Major third: 2^(4/12) = 1.2599210498... (A002580) %Y A329219 Perfect fourth: 2^(5/12) = 1.3348398541... (A329216) %Y A329219 Aug. fourth/ %Y A329219 Dim. fifth: 2^(6/12) = 1.4142135623... (A002193) %Y A329219 Perfect fifth: 2^(7/12) = 1.4983070768... (A328229) %Y A329219 Minor sixth: 2^(8/12) = 1.5874010519... (A005480) %Y A329219 Major sixth: 2^(9/12) = 1.6817928305... (A011006) %Y A329219 Minor seventh: 2^(10/12) = 1.7817974362... (this sequence) %Y A329219 Major seventh: 2^(11/12) = 1.8877486253... (A329220) %Y A329219 Perfect octave: 2^(12/12) = 2.0000000000 %K A329219 nonn,easy,cons %O A329219 1,2 %A A329219 _Jianing Song_, Nov 08 2019