cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A329224 a(n) is the smallest prime q such that Sum_{primes r <= q} Kronecker(r,prime(n)) > 0 (or equivalently, Sum_{primes r <= q} Kronecker(r,prime(n)) = 1), or 0 if no such prime exists.

Original entry on oeis.org

11100143, 608981813029, 2082927221, 2, 5, 2083, 2, 11, 2, 719, 2, 11, 2, 53, 2, 17, 5, 5, 163, 2, 2, 2, 11, 2, 2, 23, 2, 23, 5, 2, 2, 5, 2, 11, 31, 2, 17, 15073, 2, 47, 5, 5, 2, 2, 47, 2, 59, 2, 11, 5, 2, 2, 2, 5, 2, 2, 47, 2, 23, 2, 97, 349, 103, 2, 2, 67, 149, 2, 67
Offset: 1

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In general, assuming the strong form of the Riemann Hypothesis, if 0 < a, b < k, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod k, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not, where Pi(k,b)(n) is the number of primes <= n that are congruent to b modulo k. This phenomenon is called "Chebyshev's bias". (See Wikipedia link and especially the links in A007350.) [Edited by Peter Munn, Jun 26 2025]
This sequence gives the smallest primes q to violate the inequality Sum_{primes r <= q} Kronecker(r,p) <= 0, for p = prime(n).

Examples

			For prime(6) = 13, q = 2083 is the first case such that Sum_{primes r <= q} Kronecker(r,13) = 1 > 0, so a(6) = 2083.
		

Crossrefs

Cf. A007350, A306499, A306500, A329225 (indices of these primes).

Programs

  • PARI
    a(n) = if(n==2, 608981813029, if(n==3, 2082927221, my(p=prime(n), i=0); forprime(q=2, oo, i+=kronecker(q, p); if(i>0, return(q)))))
Showing 1-1 of 1 results.