A329229 Numbers that are the product of two odd prime powers with Euler phi-functions having solely a single 2 as a common prime factor.
15, 21, 33, 35, 39, 45, 51, 55, 57, 69, 75, 77, 87, 93, 95, 99, 111, 115, 119, 123, 129, 135, 141, 143, 147, 153, 155, 159, 161, 175, 177, 183, 187, 201, 203, 207, 209, 213, 215, 219, 225, 235, 237, 245, 249, 253, 261, 267, 287, 291, 295, 297, 299, 303, 309, 319
Offset: 1
Keywords
References
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Selbstverlag, Zürich, 2003, ISBN 3-9522917-0-6. See p. 15.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half The Amount of Residues, arXiv:1504.02757v2 [math.NT], 7 Feb 2016. See p. 10.
- Ki-Suk Lee, Miyeon Kwon and GiCheon Shin, Multiplicative Groups of Integers with Semi-primitive Roots Modulo n, Commun. Korean Math. Soc., Vol. 28, No. 1 (2013), pp. 71-77.
- Ki-Suk Lee, Ji-Eun Lee, Gerold Brändli and Tim Beyne, Galois Polynomials from Quotient Groups, Journal Chungcheong Math. Soc., Vol. 31, No. 3 (2018), pp. 309-319. See p. 311.
Crossrefs
Cf. A037074.
Programs
-
Maple
with(NumberTheory, Totient, PrimitiveRoot, Divisors, tau, phi, lambda); K := {}; for i from 3 by 2 to 100 do for j from i+2 by 2 to 100 do if numelems(ifactors(i*j)[2]) = 2 and gcd(phi(i), phi(j)) = 2 and gcd(i, j) = 1 then K := K union {i*j} end if end do end do; print(K)
-
Mathematica
Select[Range[5, 320, 2], (f = FactorInteger[#]; Length[f] == 2 && GCD[ EulerPhi[ f[[1, 1]]^f[[1, 2]]], EulerPhi[f[[2, 1]]^f[[2, 2]]]] == 2) &] (* Giovanni Resta, Dec 01 2019 *)
Extensions
More terms from Giovanni Resta, Dec 01 2019
Comments