cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329229 Numbers that are the product of two odd prime powers with Euler phi-functions having solely a single 2 as a common prime factor.

Original entry on oeis.org

15, 21, 33, 35, 39, 45, 51, 55, 57, 69, 75, 77, 87, 93, 95, 99, 111, 115, 119, 123, 129, 135, 141, 143, 147, 153, 155, 159, 161, 175, 177, 183, 187, 201, 203, 207, 209, 213, 215, 219, 225, 235, 237, 245, 249, 253, 261, 267, 287, 291, 295, 297, 299, 303, 309, 319
Offset: 1

Views

Author

Gerold Brändli, Nov 08 2019

Keywords

Comments

Numbers p^j*q^k, denoted "cyclic semiprimes", such that gcd(phi(p^j), phi(q^k)) = 2, p and q odd primes, j and k positive integers (Brändli and Beyne, 2016, def.4 and Lee et al., 2013, theo.1).
The products of twin primes (A037074), and odd composite numbers with a single pes-sequence, i.e. parameter B = 1, are a subset of this sequence (Schick 2003, eq.1.6.2).
Any element x in Zs* is said to be a "semi-primitive root", if the order of x modulo s is phi(s)/2, where phi(s) is the Euler phi-function (Lee 2013, def.1).
If s is a cyclic semiprime, x is a generating element and k an integer, then the following reduced modulus denoted mod* returns all elements of Zs* in the interval ]0,s/2[, with mod* defined by x^k mod* s = min(+-x^k mod s) (Lee et al., 2018, def.2.3).
Trivially, the number of cyclic semiprimes of the form 3*p is infinite.

References

  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Selbstverlag, Zürich, 2003, ISBN 3-9522917-0-6. See p. 15.

Crossrefs

Cf. A037074.

Programs

  • Maple
    with(NumberTheory, Totient, PrimitiveRoot, Divisors, tau, phi, lambda); K := {}; for i from 3 by 2 to 100 do for j from i+2 by 2 to 100 do if numelems(ifactors(i*j)[2]) = 2 and gcd(phi(i), phi(j)) = 2 and gcd(i, j) = 1 then K := K union {i*j} end if end do end do; print(K)
  • Mathematica
    Select[Range[5, 320, 2], (f = FactorInteger[#]; Length[f] == 2 && GCD[ EulerPhi[ f[[1, 1]]^f[[1, 2]]], EulerPhi[f[[2, 1]]^f[[2, 2]]]] == 2) &] (* Giovanni Resta, Dec 01 2019 *)

Extensions

More terms from Giovanni Resta, Dec 01 2019