cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329244 Sum of every third term of the Padovan sequence A000931.

Original entry on oeis.org

1, 2, 3, 5, 10, 22, 50, 115, 266, 617, 1433, 3330, 7740, 17992, 41825, 97230, 226031, 525457, 1221538, 2839730, 6601570, 15346787, 35676950, 82938845, 192809421, 448227522, 1042002568, 2422362080, 5631308625, 13091204282, 30433357675, 70748973085, 164471408186
Offset: 0

Views

Author

David Nacin, Nov 09 2019

Keywords

Examples

			For n = 3, a(3) = 1+1+1+2 = 5.
		

Crossrefs

Partial sums of A034943.
Cf. A000931.

Programs

  • Mathematica
    LinearRecurrence[{4, -5, 3, -1}, {1, 2, 3, 5}, 50] (* Paolo Xausa, Apr 08 2024 *)
  • PARI
    Vec((1 - 2*x) / ((1 - x)*(1 - 3*x + 2*x^2 - x^3)) + O(x^35)) \\ Colin Barker, Nov 09 2019
  • Python
    p = lambda x:[1, 0, 0][x] if x<3 else p(x-2)+p(x-3)
    a = lambda x:sum(p(3*i) for i in range(x+1))
    

Formula

a(n) = Sum_{i=0..n} A000931(3*i).
a(n) = A000931(3n+2)+1.
From Colin Barker, Nov 09 2019: (Start)
G.f.: (1 - 2*x) / ((1 - x)*(1 - 3*x + 2*x^2 - x^3)).
a(n) = 4*a(n-1) - 5*a(n-2) + 3*a(n-3) - a(n-4) for n>3. (End)