This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329246 #17 May 31 2023 04:27:17 %S A329246 2,6,7,3,9,9,9,9,8,3,6,9,7,8,5,1,8,5,2,6,1,9,9,6,6,3,2,1,2,5,3,5,2,0, %T A329246 1,2,4,9,5,2,0,5,1,3,0,5,4,0,7,5,3,8,9,1,8,4,6,4,7,7,8,0,1,9,5,3,3,4, %U A329246 0,1,8,6,6,1,8,5,8,9,3,6,5,0,1,5,3,8,7,6,1,4,2 %N A329246 Decimal expansion of Sum_{k>=1} cos(k*Pi/4)/k. %C A329246 Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i is the imaginary unit. %C A329246 In general, for real s and complex z, let f(s,z) = Sum_{k>=1} z^k/k^s, then: %C A329246 (a) if s <= 0, then f(s,z) converges to Polylog(s,z) if |z| < 1; %C A329246 (b) if 0 < s <= 1, then f(s,z) converges to Polylog(s,z) if z != 1; %C A329246 (c) if s > 1, then f(s,z) converges to Polylog(s,z) if |z| <= 1. %C A329246 As a result, let z = e^(i*x), then the series Sum_{k>=1} (cos(k*x) + i*sin(k*x))/k^s converges to Polylog(s,e^(i*x)) if and only if s > 1, or 0 < s <= 1 and x != 2*m*Pi. %F A329246 Equals log(1 + sqrt(2)/2)/2. %e A329246 Sum_{k>=1} cos(k*Pi/4)/k = -log(2*|sin(Pi/8)|) = 0.2673999983... %t A329246 RealDigits[Log[1 + Sqrt[2]/2]/2, 10, 120][[1]] (* _Amiram Eldar_, May 31 2023 *) %o A329246 (PARI) default(realprecision, 100); log(1 + sqrt(2)/2)/2 %Y A329246 Similar sequences: %Y A329246 A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i)))); %Y A329246 A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i)))); %Y A329246 A329247 (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6)))); %Y A329246 A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i)))); %Y A329246 this sequence (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4)))); %Y A329246 A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i)))); %Y A329246 A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i)))); %Y A329246 A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))). %K A329246 nonn,cons %O A329246 0,1 %A A329246 _Jianing Song_, Nov 09 2019