cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329263 Irregular triangle read by rows in which row n is the result of iterating the operation f(n) = n/8 if n == 0 (mod 8), otherwise f(n) = 8*(floor(n/8) + n + 1), terminating at the first occurrence of 1.

This page as a plain text file.
%I A329263 #19 Jan 20 2023 01:31:40
%S A329263 1,2,24,3,32,4,40,5,48,6,56,7,64,8,1,3,32,4,40,5,48,6,56,7,64,8,1,4,
%T A329263 40,5,48,6,56,7,64,8,1,5,48,6,56,7,64,8,1,6,56,7,64,8,1,7,64,8,1,8,1,
%U A329263 9,88,11,104,13,120,15,136,17,160,20,184,23,208
%N A329263 Irregular triangle read by rows in which row n is the result of iterating the operation f(n) = n/8 if n == 0 (mod 8), otherwise f(n) = 8*(floor(n/8) + n + 1), terminating at the first occurrence of 1.
%C A329263 The operation f(n) can be generalized to C(n,m) = n/m if n == 0 (mod m), m*(floor(n/m) + n + 1) otherwise. The operation for the 3x+1 (Collatz) problem is equivalent to C(n,2) and f(n) = C(n,8).
%C A329263 Conjecture: For any initial value of n >= 1 there is a number k such that f^{k}(n) = 1; in other words, every row of the triangle is finite.
%F A329263 a(n,0) = n, a(n,k + 1) = a(n,k)/8 if a(n,k) == 0 (mod 8), 8*(floor(a(n,k)/8) + a(n,k) + 1) otherwise, for n >= 1.
%e A329263 The irregular array a(n,k) starts:
%e A329263 n\k   0   1   2   3   4    5   6    7   8    9  10  11  12  13 ...
%e A329263 1:    1
%e A329263 2:    2  24   3  32   4   40   5   48   6   56   7  64   8   1
%e A329263 3:    3  32   4  40   5   48   6   56   7   64   8   1
%e A329263 4:    4  40   5  48   6   56   7   64   8    1
%e A329263 5:    5  48   6  56   7   64   8    1
%e A329263 6:    6  56   7  64   8    1
%e A329263 7:    7  64   8   1
%e A329263 8:    8   1
%e A329263 9:    9  88  11 104  13  120  15  136  17  160  20 184  23 208 ...
%e A329263 10:  10  96  12 112  14  128  16    2  24    3  32   4  40   5 ...
%e A329263 a(9,100) = 1 and a(10,20) = 1.
%o A329263 (PARI) collatz8(n)=N=[n];while(n>1,N=concat(N,n=if(n%8,8*(floor(n/8)+n+1),n/8)));N
%Y A329263 Cf. A070165.
%K A329263 nonn,easy,tabf
%O A329263 1,2
%A A329263 _Davis Smith_, Nov 09 2019