This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329269 #54 Sep 06 2023 13:41:12 %S A329269 0,1,2,3,5,6,9,10,11,12,14,15,17,21,24,28,29,30,32,35,36,39,42,44,45, %T A329269 50,51,54,55,56,57,65,66,71,72,74,75,77,78,80,84,91,95,96,101,105,107, %U A329269 110,116,117,119,120,122,126,129,131,136,137,141,144,149,150 %N A329269 Integers k such that 8*k + 1 is a prime or a square. %C A329269 All odd squares have the form 8*n + 1. %D A329269 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, theorem 14 and ch. 4.5 %e A329269 8*0 + 1 = 1 = 1^2, so 0 is a term; %e A329269 8*1 + 1 = 9 = 3^2, so 1 is a term; %e A329269 8*2 + 1 = 17 = prime(7), so 2 is a term; %e A329269 8*3 + 1 = 25 = 5^2, so 3 is a term; %e A329269 8*4 + 1 = 33 is neither prime nor square, so 4 is not a term; %e A329269 8*5 + 1 = 41 = prime(13), so 5 is a term. %p A329269 q:= k-> (t-> isprime(t) or issqr(t))(8*k+1): %p A329269 select(q, [$0..200])[]; # _Alois P. Heinz_, Feb 25 2020 %t A329269 Select[Range[0, 150], PrimeQ[(m = 8*# + 1)] || IntegerQ @ Sqrt[m] &] (* _Amiram Eldar_, Feb 29 2020 *) %o A329269 (Rexx) %o A329269 S = 0 ; U = 1 ; P = 1 %o A329269 do N = 1 while length( S ) < 256 %o A329269 C = 8 * N + 1 %o A329269 do I = U by 2 %o A329269 K = I * I ; if K > C then leave I %o A329269 U = I ; if K < C then iterate I %o A329269 S = S || ',' N ; iterate N %o A329269 end I %o A329269 do I = P %o A329269 K = PRIME( I ) ; if K > C then leave I %o A329269 P = I ; if K < C then iterate I %o A329269 S = S || ',' N ; iterate N %o A329269 end I %o A329269 end N %o A329269 say S ; return S %o A329269 (PARI) isok(k) = my(x=8*k+1); isprime(x) || issquare(x); \\ _Michel Marcus_, Feb 27 2020 %Y A329269 Union of the triangular numbers A000217 and A005123. %Y A329269 Cf. A000040, A016754 (odd squares). %K A329269 nonn,easy %O A329269 1,3 %A A329269 _Frank Ellermann_, Feb 23 2020