This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329278 #29 Jul 14 2023 11:53:39 %S A329278 0,0,1,0,1,3,2,0,1,3,6,2,7,5,4,0,1,3,6,10,15,5,12,4,13,7,2,14,11,9,8, %T A329278 0,1,3,6,10,15,21,28,4,13,23,2,14,27,9,24,8,25,11,30,18,7,29,20,12,5, %U A329278 31,26,22,19,17,16,0,1,3,6,10,15,21,28,36,45,55,2 %N A329278 Irregular table read by rows. The n-th row is the permutation of {0, 1, 2, ..., 2^n-1} given by T(n,k) = k(k+1)/2 (mod 2^n). %C A329278 Conjecture: for n > 0, the n-th row has 2^(n-1)-1 descents. %C A329278 T(n,k) = A000217(k) for 0 <= k <= A017911(n+1), and T(n,2^n-1) = 2^(n-1). %H A329278 Peter Kagey, <a href="/A329278/b329278.txt">Table of n, a(n) for n = 0..8190</a> (first 12 rows) %e A329278 Table begins: %e A329278 0; %e A329278 0, 1; %e A329278 0, 1, 3, 2; %e A329278 0, 1, 3, 6, 2, 7, 5, 4; %e A329278 0, 1, 3, 6, 10, 15, 5, 12, 4, 13, 7, 2, 14, 11, 9, 8; %e A329278 ... %p A329278 T:= (n, k)-> irem(k*(k+1)/2, 2^n): %p A329278 seq(seq(T(n, k), k=0..2^n-1), n=0..6); # _Alois P. Heinz_, Jan 08 2020 %Y A329278 Cf. A000217, A000225, A017911, A053645, A105332, A330766, A331105, A363674. %Y A329278 T(n,2^n-1) gives A131577. %K A329278 nonn,tabf,look %O A329278 0,6 %A A329278 _Peter Kagey_, Nov 11 2019