cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329282 Decimal expansion of the quantile z_0.99 of the standard normal distribution.

This page as a plain text file.
%I A329282 #11 Feb 16 2025 08:33:58
%S A329282 2,3,2,6,3,4,7,8,7,4,0,4,0,8,4,1,1,0,0,8,8,5,6,0,6,1,6,3,3,4,6,9,1,1,
%T A329282 7,2,3,3,5,1,8,1,7,1,4,1,5,3,2,0,1,3,0,6,9,0,6,5,6,4,0,2,4,7,8,9,0,8,
%U A329282 7,6,6,2,6,4,5,6,0,3,4,4,8,7,3,5,6,8,2,2,9,3,0
%N A329282 Decimal expansion of the quantile z_0.99 of the standard normal distribution.
%C A329282 z_p is the number z such that Phi(z) = p, where Phi(x) = Integral_{t=-oo..x} (1/sqrt(2*Pi))*exp(-t^2/2)*dt is the cumulative distribution function of the standard normal distribution. This sequence gives z_0.99 (also called the 99th percentile).
%C A329282 This number can also be denoted as probit(0.99), where probit(p) is the inverse function of Phi(x). See the Wikipedia link below.
%H A329282 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuantileFunction.html">Quantile Function</a>
%H A329282 Wikipedia, <a href="https://en.wikipedia.org/wiki/Probit">Probit</a>
%e A329282 If X ~ N(0,1), then P(X<=2.3263478740...) = 0.99, P(X<=-2.3263478740...) = 0.01.
%o A329282 (PARI) default(realprecision, 100); solve(x=0, 5, erfc(x)-2*0.01)*sqrt(2)
%Y A329282 Quantiles of the standard normal distribution: A092678 (z_0.75), A329280 (z_0.9), A329281 (z_0.95), this sequence (z_0.99), A329283 (z_0.995), A329284 (z_0.999), A329285 (z_0.9995), A329286 (z_0.9999), A329287 (z_0.99999), A329363 (z_0.999999).
%K A329282 nonn,cons
%O A329282 1,1
%A A329282 _Jianing Song_, Nov 12 2019