This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329289 #48 Feb 03 2025 21:28:29 %S A329289 1,2,3,5,6,8,11,14,18,23,29,36,45,55,67,82,99,119,143,170,202,240,283, %T A329289 333,391,457,533,621,721,835,966,1114,1282,1474,1690,1935,2213,2525, %U A329289 2877,3274,3719,4219,4781,5409,6112,6900,7778,8758,9852,11068,12422 %N A329289 Expansion of g.f. (1 + x) * (1 + x^2) * Product_{k>=1} (1 + x^k). %C A329289 Number of partitions of n into distinct parts if there are two types of 1's and two types of 2's. %F A329289 a(n) = A036469(n) - A036469(n-4). %F A329289 a(n) ~ exp(Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Jun 11 2020 %F A329289 G.f.: A(x) = 1/2 * Sum_{n >= 0} x^((n-2)*(n-3)/2) / (Product_{k = 1..n} 1 - x^k). - _Peter Bala_, Feb 03 2025 %p A329289 series(1/2 * add( x^((n-2)*(n-3)/2) / mul(1 - x^k, k = 1..n), n = 0..12), x, 51): %p A329289 seq(coeftayl(%, x = 0, n), n = 0..50); # _Peter Bala_, Feb 03 2025 %t A329289 nmax = 50; CoefficientList[Series[(1 + x) (1 + x^2) Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] %t A329289 a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[(-1)^(k/d + 1) If[d < 3, 2, 1] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 50}] %Y A329289 Cf. A000009, A000097, A022567, A036469, A052816, A096914, A329384. %K A329289 nonn,easy %O A329289 0,2 %A A329289 _Ilya Gutkovskiy_, Jun 07 2020