This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329295 #10 Nov 19 2019 05:58:39 %S A329295 0,1,2,3,4,7,8,9,14,43,44,64,93,94,784,1562,1563,1564,1569,1599,3124, %T A329295 9374 %N A329295 Numbers whose digits are in nondecreasing order in bases 5 and 6. %C A329295 There are no more terms through 10^10000 (which is a 14307-digit number in base 5 and a 12851-digit number in base 6). But can it be proved that 9374 is the final term of the sequence? %e A329295 a(1) = 0 = 0_5 = 0_6 %e A329295 a(2) = 1 = 1_5 = 1_6 %e A329295 a(3) = 2 = 2_5 = 2_6 %e A329295 a(4) = 3 = 3_5 = 3_6 %e A329295 a(5) = 4 = 4_5 = 4_6 %e A329295 a(6) = 7 = 12_5 = 11_6 %e A329295 a(7) = 8 = 13_5 = 12_6 %e A329295 a(8) = 9 = 14_5 = 13_6 %e A329295 a(9) = 14 = 24_5 = 22_6 %e A329295 a(10) = 43 = 133_5 = 111_6 %e A329295 a(11) = 44 = 134_5 = 112_6 %e A329295 a(12) = 64 = 224_5 = 144_6 %e A329295 a(13) = 93 = 333_5 = 233_6 %e A329295 a(14) = 94 = 334_5 = 234_6 %e A329295 a(15) = 784 = 11114_5 = 3344_6 %e A329295 a(16) = 1562 = 22222_5 = 11122_6 %e A329295 a(17) = 1563 = 22223_5 = 11123_6 %e A329295 a(18) = 1564 = 22224_5 = 11124_6 %e A329295 a(19) = 1569 = 22234_5 = 11133_6 %e A329295 a(20) = 1599 = 22344_5 = 11223_6 %e A329295 a(21) = 3124 = 44444_5 = 22244_6 %e A329295 a(22) = 9374 = 244444_5 = 111222_6 %Y A329295 Intersection of A023747 (base 5) and A023748 (base 6). %Y A329295 Numbers whose digits are in nondecreasing order in bases b and b+1: A329294 (b=4), this sequence (b=5), A329296 (b=6), A329297 (b=7), A329298 (b=8), A329299 (b=9). See A329300 for the (apparently) largest term of each of these sequences. %K A329295 nonn,base %O A329295 1,3 %A A329295 _Jon E. Schoenfield_, Nov 17 2019