cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329298 Numbers whose digits are in nondecreasing order in bases 8 and 9.

This page as a plain text file.
%I A329298 #4 Nov 18 2019 22:07:54
%S A329298 0,1,2,3,4,5,6,7,10,11,12,13,14,15,20,21,22,23,30,31,91,92,93,94,95,
%T A329298 101,102,103,111,151,182,183,222,223,293,294,295,303,365,366,367,374,
%U A329298 375,822,823,831,951,1023,10023,14774,14775,14783,599551,608623,1203126,1203127,1203135
%N A329298 Numbers whose digits are in nondecreasing order in bases 8 and 9.
%C A329298 There are no more terms through 10^10000 (which is an 11074-digit number in base 8 and a 10480-digit number in base 9). But can it be proved that 1203135 is the final term of the sequence?
%e A329298 Sequence includes 8 terms that are 1-digit numbers in both bases, 12 that are 2-digit numbers in both bases, 23 that are 3-digit terms in both bases, and the following:
%e A329298   a(44) =     822 =    1466_8 =    1113_9
%e A329298   a(45) =     823 =    1467_8 =    1114_9
%e A329298   a(46) =     831 =    1477_8 =    1123_9
%e A329298   a(47) =     951 =    1667_8 =    1266_9
%e A329298   a(48) =    1023 =    1777_8 =    1356_9
%e A329298   a(49) =   10023 =   23447_8 =   14666_9
%e A329298   a(50) =   14774 =   34666_8 =   22235_9
%e A329298   a(51) =   14775 =   34667_8 =   22236_9
%e A329298   a(52) =   14783 =   34677_8 =   22245_9
%e A329298   a(53) =  599551 = 2222777_8 = 1113377_9
%e A329298   a(54) =  608623 = 2244557_8 = 1126777_9
%e A329298   a(55) = 1203126 = 4455666_8 = 2233336_9
%e A329298   a(56) = 1203127 = 4455667_8 = 2233337_9
%e A329298   a(57) = 1203135 = 4455677_8 = 2233346_9
%Y A329298 Intersection of A023750 (base 8) and A023751 (base 9). Numbers whose digits are in nondecreasing order in bases b and b+1: A329294 (b=4), A329295 (b=5), A329296 (b=6), A329297 (b=7), this sequence (b=8), A329299 (b=9). See A329300 for the (apparently) largest term of each of these sequences.
%K A329298 nonn,base
%O A329298 1,3
%A A329298 _Jon E. Schoenfield_, Nov 17 2019