This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329299 #11 Oct 14 2022 12:21:00 %S A329299 0,1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,22,23,24,25,26,33,34,35,44, %T A329299 111,112,113,114,115,116,122,123,124,125,133,134,188,222,223,224,233, %U A329299 277,278,366,367,368,377,455,456,457,458,466,467,556,557,566,1113 %N A329299 Numbers whose digits are in nondecreasing order in bases 9 and 10. %C A329299 a(91) = 12555566 is the largest term < 10^10000 (which is a 10480-digit number in base 9). But can it be proved that 12555566 is the final term of the sequence? %e A329299 Sequence includes, respectively, 9, 16, 32, and 11 terms that are 1-, 2-, 3-, and 4- digit terms in both bases, and the following: %e A329299 a(69) = 14777 = 22238_9 %e A329299 a(70) = 15677 = 23448_9 %e A329299 a(71) = 22234 = 33444_9 %e A329299 a(72) = 22235 = 33445_9 %e A329299 a(73) = 22236 = 33446_9 %e A329299 a(74) = 22237 = 33447_9 %e A329299 a(75) = 22238 = 33448_9 %e A329299 a(76) = 22244 = 33455_9 %e A329299 a(77) = 22245 = 33456_9 %e A329299 a(78) = 22246 = 33457_9 %e A329299 a(79) = 22247 = 33458_9 %e A329299 a(80) = 22255 = 33467_9 %e A329299 a(81) = 22256 = 33468_9 %e A329299 a(82) = 22335 = 33566_9 %e A329299 a(83) = 22336 = 33567_9 %e A329299 a(84) = 22337 = 33568_9 %e A329299 a(85) = 22345 = 33577_9 %e A329299 a(86) = 22346 = 33578_9 %e A329299 a(87) = 22355 = 33588_9 %e A329299 a(88) = 44468 = 66888_9 %e A329299 a(89) = 222344 = 367888_9 %e A329299 a(90) = 1233467 = 2278888_9 %e A329299 a(91) = 12555566 = 25555888_9 %p A329299 filter:= proc(n) local L; %p A329299 L:= convert(n,base,10); %p A329299 `and`(seq(L[i+1]<=L[i],i=1..nops(L)-1)) %p A329299 end proc: %p A329299 ND[1]:= [$1..8]: R:= $0..8: %p A329299 for d from 2 to 10 do %p A329299 ND[d]:= map(t -> seq(9*t+r, r=(t mod 9) ..8), ND[d-1]); %p A329299 R:= R, op(select(filter, ND[d])); %p A329299 od: %p A329299 R; # _Robert Israel_, Nov 20 2019 %t A329299 Select[Range[0,1200],Min[Differences[IntegerDigits[#]]]>-1&& Min[ Differences[ IntegerDigits[ #,9]]]>-1&] (* _Harvey P. Dale_, Oct 14 2022 *) %Y A329299 Intersection of A023751 (base 9) and A009994 (base 10). Numbers whose digits are in nondecreasing order in bases b and b+1: A329294 (b=4), A329295 (b=5), A329296 (b=6), A329297 (b=7), A329299 (b=8), this sequence (b=9). See A329300 for the (apparently) largest term of each of these sequences. %K A329299 nonn,base %O A329299 1,3 %A A329299 _Jon E. Schoenfield_, Nov 17 2019