cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329307 Define b(D) = -Sum_{i=1..D} Kronecker(-D,i)*i for D == 0 or 3 (mod 4); sequence gives D such that b(D) = 0 and b(D/k^2) != 0 for k > 1, given that D/k^2 is an integer == 0 or 3 (mod 4).

Original entry on oeis.org

28, 60, 72, 92, 99, 100, 124, 147, 156, 180, 188, 207, 220, 275, 284, 315, 316, 348, 380, 412, 423, 444, 475, 476, 504, 507, 508, 531, 572, 600, 604, 612, 636, 639, 668, 676, 732, 747, 764, 775, 796, 847, 855, 860, 892, 924, 931, 936, 956, 963, 968, 975, 980, 988, 1020
Offset: 1

Views

Author

Jianing Song, Nov 30 2019

Keywords

Comments

Note that {Kronecker(D,i)} is a Dirichlet character mod |D| if and only if D == 0, 1 (mod 4).
Primitive terms in A329306.
Numbers of the form d*p^2, where -d is a fundamental discriminant and Kronecker(-d,p) = 1 (i.e., the rational prime p decomposes in the quadratic number field with discriminant -d).

Examples

			60 is a term because 60 = 2^2 * 15 and -15 is a fundamental discriminant. Indeed, -Sum_{i=1..60} Kronecker(-60,i)*i = 0 and -Sum_{i=1..15} Kronecker(-15,i)*i != 0.
Although -Sum_{i=1..252} Kronecker(-252,i)*i = 0, 252 is not a term, because 252/3^2 = 28 and -Sum_{i=1..28} Kronecker(-28,i)*i = 0
		

Crossrefs

Programs

  • PARI
    isA329307(n) = if(n%4==0||n%4==3, my(f=factor(n)); for(i=1, omega(n), my(p=f[i,1],e=f[i,2],m=n/p^e); if(e==2 && isfundamental(-m) && kronecker(-m,p)==1, return(1)))); 0