A329311 a(n) is the product of the numbers k such that a(n-2*k) = a(n-k) and 0 < n-2*k < n-k < n.
1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 8, 10, 90, 42, 42, 56, 56, 72, 9, 10, 1, 1, 1, 1, 2, 2, 3, 8, 1, 1, 1, 11, 24, 780, 1092, 7644, 11760, 11760, 311040, 2736, 64600, 420, 420, 462, 157080, 10626, 483, 210672, 20, 420, 462, 462, 506, 23, 624, 27, 5292, 45472, 812
Offset: 1
Examples
The first terms, alongside the corresponding k's, are: n a(n) k's --- ------- --------- 1 1 {} 2 1 {} 3 1 {1} 4 1 {1} 5 2 {1, 2} 6 2 {2} 7 3 {1, 3} 8 1 {} 9 1 {} 10 1 {1} 11 1 {1} 12 8 {1, 2, 4} 13 10 {2, 5} 14 90 {3, 5, 6} 15 42 {6, 7} 16 42 {6, 7} 17 56 {1, 7, 8}
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Logarithmic scatterplot of the first 80000 terms (the two colored sections are equal up to an horizontal shift)
Crossrefs
See A329257 for similar sequences.
Programs
-
PARI
for (n=1, #(a=vector(60)), print1 (a[n] = prod(k=1, (n-1)\2, if (a[n-k]==a[n-2*k], k, 1)) ", "))
Comments