A329313 Length of the Lyndon factorization of the reversed binary expansion of n.
0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 3, 2, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 3, 2, 3, 2, 4, 1, 2, 3, 4, 1, 3, 2, 5, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 2, 3, 2, 3, 2, 4, 1, 3, 3, 4, 2, 3, 2, 5, 1, 2, 2, 3, 1, 4, 3
Offset: 0
Keywords
Examples
The sequence of reversed binary expansions of the nonnegative integers together with their Lyndon factorizations begins: 0: () = () 1: (1) = (1) 2: (01) = (01) 3: (11) = (1)(1) 4: (001) = (001) 5: (101) = (1)(01) 6: (011) = (011) 7: (111) = (1)(1)(1) 8: (0001) = (0001) 9: (1001) = (1)(001) 10: (0101) = (01)(01) 11: (1101) = (1)(1)(01) 12: (0011) = (0011) 13: (1011) = (1)(011) 14: (0111) = (0111) 15: (1111) = (1)(1)(1)(1) 16: (00001) = (00001) 17: (10001) = (1)(0001) 18: (01001) = (01)(001) 19: (11001) = (1)(1)(001) 20: (00101) = (00101)
Crossrefs
The non-reversed version is A211100.
Positions of 1's are A328596.
The "co" version is A329326.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose reversed binary expansion is a aperiodic are A328594.
Length of the co-Lyndon factorization of the binary expansion is A329312.
Programs
-
Mathematica
lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And]; lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#1]]&]]]]; Table[If[n==0,0,Length[lynfac[Reverse[IntegerDigits[n,2]]]]],{n,0,30}]
Comments