cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329317 Length of the Lyndon factorization of the reversed first n terms of A000002.

Original entry on oeis.org

1, 2, 3, 2, 2, 3, 3, 4, 5, 4, 5, 6, 5, 3, 4, 4, 2, 3, 4, 3, 4, 3, 3, 4, 4, 5, 6, 5, 4, 5, 5, 2, 3, 3, 4, 5, 4, 5, 6, 5, 3, 4, 4, 5, 6, 5, 6, 5, 3, 4, 4, 2, 3, 4, 3, 4, 5, 4, 3, 4, 4, 5, 6, 5, 6, 7, 6, 4, 5, 5, 3, 4, 4, 5, 6, 5, 6, 5, 4, 5, 6, 5, 6, 7, 6, 5, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2019

Keywords

Comments

We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product. Equivalently, a Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into Lyndon words, and if these factors are arranged in lexicographically decreasing order, their concatenation is equal to their Lyndon product. For example, (1001) has sorted Lyndon factorization (001)(1).

Examples

			The sequence of Lyndon factorizations of the reversed initial terms of A000002 begins:
   1: (1)
   2: (2)(1)
   3: (2)(2)(1)
   4: (122)(1)
   5: (1122)(1)
   6: (2)(1122)(1)
   7: (12)(1122)(1)
   8: (2)(12)(1122)(1)
   9: (2)(2)(12)(1122)(1)
  10: (122)(12)(1122)(1)
  11: (2)(122)(12)(1122)(1)
  12: (2)(2)(122)(12)(1122)(1)
  13: (122)(122)(12)(1122)(1)
  14: (112212212)(1122)(1)
  15: (2)(112212212)(1122)(1)
  16: (12)(112212212)(1122)(1)
  17: (1121122122121122)(1)
  18: (2)(1121122122121122)(1)
  19: (2)(2)(1121122122121122)(1)
  20: (122)(1121122122121122)(1)
For example, the reversed first 13 terms of A000002 are (1221221211221), with Lyndon factorization (122)(122)(12)(1122)(1), so a(13) = 5.
		

Crossrefs

Row-lengths of A329316.
The non-reversed version is A329315.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#]]&]]]];
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=Nest[kolagrow,{1},n-1];
    Table[Length[lynfac[Reverse[kol[n]]]],{n,100}]