This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329320 #18 Apr 21 2024 22:26:44 %S A329320 0,1,1,1,1,2,1,2,1,2,2,2,1,2,2,2,1,2,2,2,2,3,2,3,1,2,2,2,2,3,2,3,1,2, %T A329320 2,2,2,3,2,3,2,3,3,3,2,3,3,3,1,2,2,2,2,3,2,3,2,3,3,3,2,3,3,3,1,2,2,2, %U A329320 2,3,2,3,2,3,3,3,2,3,3,3,2,3,3,3,3,4,3 %N A329320 a(n) = Sum_{k=0..floor(log_2(n))} 1 - A035263(1 + floor(n/2^k)). %C A329320 Sequence which arise from attempts to simplify computing of A329319. %C A329320 For all positive integers k, the subsequence a(2^k) to a(3*2^(k-1)-1) is identical to the subsequence a(3*2^(k-1)) to a(2^(k+1)-1). Also subsequences a(2^k) to a(3*2^(k-1)-1) and a(0) to a(2^(k-1)-1) always differ by 1. %H A329320 Mikhail Kurkov, <a href="/A329320/b329320.txt">Table of n, a(n) for n = 0..8191</a> [verification needed] %F A329320 a(n) = a(floor(n/2)) + 1 - A035263(n+1) for n>0 with a(0)=0. %F A329320 a(2^m+k) = a(k mod 2^(m-1)) + 1 for 0<=k<2^m, m>0 with a(0)=0, a(1)=1. %o A329320 (PARI) a(n) = if (n==0, 0, a(floor(n/2)) + valuation(n+1, 2) % 2); \\ _Michel Marcus_, Nov 13 2019 %o A329320 (PARI) a(n)=my(s,t); while(n, n>>=valuation(n,2); t=valuation(n+1,2); s+=(t+1)\2; n>>=t); s \\ _Charles R Greathouse IV_, Oct 14 2021 %Y A329320 Cf. A035263, A329319. %K A329320 nonn,easy %O A329320 0,6 %A A329320 _Mikhail Kurkov_, Nov 10 2019 [verification needed]