This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329324 #12 Jun 20 2021 11:07:30 %S A329324 0,0,0,0,0,1,2,7,16,37,76,166,328,669,1326,2626,5138,10104,19680, %T A329324 38442,74822,145715,283424,551721,1073224 %N A329324 Number of Lyndon compositions of n whose reverse is not a co-Lyndon composition. %C A329324 A Lyndon composition of n is a finite sequence summing to n that is lexicographically strictly less than all of its cyclic rotations. A co-Lyndon composition of n is a finite sequence summing to n that is lexicographically strictly greater than all of its cyclic rotations. %e A329324 The a(6) = 1 through a(9) = 16 compositions: %e A329324 (132) (142) (143) (153) %e A329324 (1132) (152) (162) %e A329324 (1142) (243) %e A329324 (1232) (1143) %e A329324 (1322) (1152) %e A329324 (11132) (1242) %e A329324 (11312) (1332) %e A329324 (1422) %e A329324 (11142) %e A329324 (11232) %e A329324 (11322) %e A329324 (11412) %e A329324 (12132) %e A329324 (111132) %e A329324 (111312) %e A329324 (112212) %t A329324 lynQ[q_]:=Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And]; %t A329324 colynQ[q_]:=Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And]; %t A329324 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],lynQ[#]&&!colynQ[Reverse[#]]&]],{n,15}] %Y A329324 Lyndon and co-Lyndon compositions are counted by A059966. %Y A329324 Numbers whose reversed binary expansion is Lyndon are A328596. %Y A329324 Numbers whose binary expansion is co-Lyndon are A275692. %Y A329324 Lyndon compositions that are not weakly increasing are A329141. %Y A329324 Cf. A000740, A001037, A008965, A060223, A102659, A211100, A329131, A329312, A329313, A329318, A329326. %K A329324 nonn,more %O A329324 1,7 %A A329324 _Gus Wiseman_, Nov 11 2019 %E A329324 a(21)-a(25) from _Robert Price_, Jun 20 2021