This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329327 #21 Mar 31 2021 01:47:40 %S A329327 2,3,5,9,11,17,19,23,33,35,37,39,43,47,65,67,69,71,75,77,79,87,95,129, %T A329327 131,133,135,137,139,141,143,147,149,151,155,157,159,171,175,183,191, %U A329327 257,259,261,263,265,267,269,271,275,277,279,281,283,285,287,293 %N A329327 Numbers whose binary expansion has Lyndon factorization of length 2 (the minimum for n > 1). %C A329327 First differs from A329357 in having 77 and lacking 83. %C A329327 Also numbers whose decapitated binary expansion is a Lyndon word (see also A329401). %F A329327 a(n) = A339608(n) + 1. - _Harald Korneliussen_, Mar 12 2020 %e A329327 The binary expansion of each term together with its Lyndon factorization begins: %e A329327 2: (10) = (1)(0) %e A329327 3: (11) = (1)(1) %e A329327 5: (101) = (1)(01) %e A329327 9: (1001) = (1)(001) %e A329327 11: (1011) = (1)(011) %e A329327 17: (10001) = (1)(0001) %e A329327 19: (10011) = (1)(0011) %e A329327 23: (10111) = (1)(0111) %e A329327 33: (100001) = (1)(00001) %e A329327 35: (100011) = (1)(00011) %e A329327 37: (100101) = (1)(00101) %e A329327 39: (100111) = (1)(00111) %e A329327 43: (101011) = (1)(01011) %e A329327 47: (101111) = (1)(01111) %e A329327 65: (1000001) = (1)(000001) %e A329327 67: (1000011) = (1)(000011) %e A329327 69: (1000101) = (1)(000101) %e A329327 71: (1000111) = (1)(000111) %e A329327 75: (1001011) = (1)(001011) %e A329327 77: (1001101) = (1)(001101) %t A329327 lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And]; %t A329327 lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#1]]&]]]]; %t A329327 Select[Range[100],Length[lynfac[IntegerDigits[#,2]]]==2&] %Y A329327 Positions of 2's in A211100. %Y A329327 Positions of rows of length 2 in A329314. %Y A329327 The "co-" and reversed version is A329357. %Y A329327 Binary Lyndon words are counted by A001037 and ranked by A102659. %Y A329327 Length of the co-Lyndon factorization of the binary expansion is A329312. %Y A329327 Cf. A059966, A060223, A211097, A275692, A328594, A328595, A328596, A329131, A329313, A329325, A329326, A339608. %K A329327 nonn %O A329327 1,1 %A A329327 _Gus Wiseman_, Nov 12 2019