A329329 Multiplicative operator of a ring over the positive integers that has A059897(.,.) as additive operator and is isomorphic to GF(2)[x,y] with A329050(i,j) the image of x^i * y^j.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 10, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1
Examples
Square array A(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------------------- 1| 1 1 1 1 1 1 1 1 1 1 1 1 2| 1 2 3 4 5 6 7 8 9 10 11 12 3| 1 3 5 9 7 15 11 27 25 21 13 45 4| 1 4 9 16 25 36 49 64 81 100 121 144 5| 1 5 7 25 11 35 13 125 49 55 17 175 6| 1 6 15 36 35 10 77 216 225 210 143 540 7| 1 7 11 49 13 77 17 343 121 91 19 539 8| 1 8 27 64 125 216 343 32 729 1000 1331 1728 9| 1 9 25 81 49 225 121 729 625 441 169 2025 10| 1 10 21 100 55 210 91 1000 441 22 187 2100 11| 1 11 13 121 17 143 19 1331 169 187 23 1573 12| 1 12 45 144 175 540 539 1728 2025 2100 1573 80
Links
- Rémy Sigrist, PARI program for A329329
- Eric Weisstein's World of Mathematics, Ring
- Wikipedia, Generating set of a group
- Wikipedia, Polynomial ring
Crossrefs
Programs
-
PARI
\\ See Links section.
Formula
Alternative definition: (Start)
(End)
Derived identities: (Start)
A(n,1) = A(1,n) = 1 (1 is an absorbing element).
A(n,2) = A(2,n) = n.
A(n,k) = A(k,n).
A(n, A(m,k)) = A(A(n,m), k).
(End)
Comments