A329330 Multiplication operation of a ring over the positive integers that has A059897(.,.) as addition operation and is isomorphic to GF(2)[x] with polynomial x^i mapped to A050376(i+1). Square array read by descending antidiagonals: A(n,k), n >= 1, k >= 1.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 5, 5, 5, 1, 1, 6, 7, 7, 7, 6, 1, 1, 7, 12, 9, 9, 12, 7, 1, 1, 8, 9, 20, 11, 20, 9, 8, 1, 1, 9, 15, 11, 35, 35, 11, 15, 9, 1, 1, 10, 11, 28, 13, 8, 13, 28, 11, 10, 1, 1, 11, 21, 13, 45, 63, 63, 45, 13, 21, 11, 1
Offset: 1
Examples
Square array A(n,k) begins: n\k | 1 2 3 4 5 6 7 8 9 10 11 12 ----+---------------------------------------------------------- 1 | 1 1 1 1 1 1 1 1 1 1 1 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 3 | 1 3 4 5 7 12 9 15 11 21 13 20 4 | 1 4 5 7 9 20 11 28 13 36 16 35 5 | 1 5 7 9 11 35 13 45 16 55 17 63 6 | 1 6 12 20 35 8 63 120 99 210 143 15 7 | 1 7 9 11 13 63 16 77 17 91 19 99 8 | 1 8 15 28 45 120 77 14 117 360 176 420 9 | 1 9 11 13 16 99 17 117 19 144 23 143 10 | 1 10 21 36 55 210 91 360 144 22 187 756 11 | 1 11 13 16 17 143 19 176 23 187 25 208 12 | 1 12 20 35 63 15 99 420 143 756 208 28
Links
- Eric Weisstein's World of Mathematics, Distributive
- Eric Weisstein's World of Mathematics, Group
- Eric Weisstein's World of Mathematics, Ring
- Wikipedia, Generating set of a group
- Wikipedia, Polynomial ring
Crossrefs
Formula
A059897-based definition: (Start)
(End)
Derived identities: (Start)
A(n,1) = A(1,n) = 1.
A(n,2) = A(2,n) = n.
A(n,k) = A(k,n).
A(n, A(m,k)) = A(A(n,m), k).
(End)
A(n,3) = A(3,n) = A300841(n).
A(n,4) = A(4,n) = A300841^2(n).
A(n,5) = A(5,n) = A300841^3(n).
A(n,7) = A(7,n) = A300841^4(n).
A(n,9) = A(9,n) = A300841^5(n).
Comments