cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329330 Multiplication operation of a ring over the positive integers that has A059897(.,.) as addition operation and is isomorphic to GF(2)[x] with polynomial x^i mapped to A050376(i+1). Square array read by descending antidiagonals: A(n,k), n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 5, 5, 5, 1, 1, 6, 7, 7, 7, 6, 1, 1, 7, 12, 9, 9, 12, 7, 1, 1, 8, 9, 20, 11, 20, 9, 8, 1, 1, 9, 15, 11, 35, 35, 11, 15, 9, 1, 1, 10, 11, 28, 13, 8, 13, 28, 11, 10, 1, 1, 11, 21, 13, 45, 63, 63, 45, 13, 21, 11, 1
Offset: 1

Views

Author

Peter Munn, Nov 10 2019

Keywords

Comments

When creating A329329, the author realized it was isomorphic to multiplication in the GF(2)[x,y] polynomial ring. However, A329329 was unusual in having A059897(.,.) as additive operator, whereas the equivalent univariate polynomial ring, GF(2)[x], is more commonly mapped (to integers) with bitwise exclusive-or (A003987) representing polynomial addition (and A048720(.,.) representing polynomial multiplication). This sequence shows how multiplication in GF(2)[x] can look when mapped to integers with A059897(.,.) representing polynomial addition.
The group defined by the binary operation A059897(.,.) over the positive integers is commutative with all elements self-inverse, and isomorphic to the additive group of the polynomial ring GF(2)[x]. There is a unique isomorphism extending each bijective mapping between respective minimal generating sets. The lexicographically earliest minimal generating set for the A059897 group is A050376, often called the Fermi-Dirac primes. The most meaningful generating set for the additive group of GF(2)[x] is {x^i: i >= 0}.
Using f to denote the intended isomorphism from GF(2)[x], we specify f(x^i) = A050376(i+1). This maps minimal generating sets of the additive groups, so the definition of f is completed by specifying f(a+b) = A059897(f(a), f(b)). We then calculate the image under f of polynomial multiplication in GF(2)[x], giving us this sequence as the matching multiplication operation for an isomorphic ring over the positive integers. Using g to denote the inverse of f, A(n,k) = f(g(n) * g(k)).
Note that A050376 is closed with respect to A(.,.).
Recall that GF(2)[x] is more usually mapped to integers with A003987(.,.) as addition and A048720(.,.) as multiplication. With this usual mapping, under which A000079(i) is the image of x^i, A052330(.) is the relevant isomorphism from nonnegative integers under A048720(.,.) and A003987(.,.) to positive integers under A(.,.) and A059897(.,.), with A052331(.) its inverse.

Examples

			Square array A(n,k) begins:
  n\k |  1    2    3    4    5    6    7    8    9   10   11   12
  ----+----------------------------------------------------------
   1  |  1    1    1    1    1    1    1    1    1    1    1    1
   2  |  1    2    3    4    5    6    7    8    9   10   11   12
   3  |  1    3    4    5    7   12    9   15   11   21   13   20
   4  |  1    4    5    7    9   20   11   28   13   36   16   35
   5  |  1    5    7    9   11   35   13   45   16   55   17   63
   6  |  1    6   12   20   35    8   63  120   99  210  143   15
   7  |  1    7    9   11   13   63   16   77   17   91   19   99
   8  |  1    8   15   28   45  120   77   14  117  360  176  420
   9  |  1    9   11   13   16   99   17  117   19  144   23  143
  10  |  1   10   21   36   55  210   91  360  144   22  187  756
  11  |  1   11   13   16   17  143   19  176   23  187   25  208
  12  |  1   12   20   35   63   15   99  420  143  756  208   28
		

Crossrefs

Distributes over A059897, and isomorphic to A048720 over A003987, with A052331 (inverse A052330) as isomorphism.
Row/column 3: A300841.
Row/column k sorted into increasing order: A003159 (k=3), A339690 (k=4), A000379 (k=6).
Subsequences of row/column k: A240521 (k=6), A240522 (k=8), A240536 (k=10), A240524 (k=24), A241025 (k=30), A241024 (k=40).

Formula

A(n,k) = A052330(A048720(A052331(n), A052331(k))), n >= 1, k >= 1.
A059897-based definition: (Start)
A(A050376(i), A050376(j)) = A050376(i+j-1).
A(A059897(n,k), m) = A059897(A(n,m), A(k,m)).
A(m, A059897(n,k)) = A059897(A(m,n), A(m,k)).
(End)
Derived identities: (Start)
A(n,1) = A(1,n) = 1.
A(n,2) = A(2,n) = n.
A(n,k) = A(k,n).
A(n, A(m,k)) = A(A(n,m), k).
(End)
A(A300841(n), k) = A(n, A300841(k)) = A300841(A(n,k)).
A(n,3) = A(3,n) = A300841(n).
A(n,4) = A(4,n) = A300841^2(n).
A(n,5) = A(5,n) = A300841^3(n).
A(A050376(m), 6) = A(6, A050376(m)) = A240521(m).
A(n,7) = A(7,n) = A300841^4(n).
A(A050376(m), 8) = A(8, A050376(m)) = A240522(m).
A(n,9) = A(9,n) = A300841^5(n).
A(A050376(m), 10) = A(10, A050376(m)) = A240536(m).
A(A050376(m), 12) = A(12, A050376(m)) = A300841(A240521(m)).
A(A050376(m), 24) = A(24, A050376(m)) = A240524(m).
A(A050376(m), 30) = A(30, A050376(m)) = A241025(m).
A(A050376(m), 40) = A(40, A050376(m)) = A241024(m).