This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329342 #28 Nov 13 2019 00:18:56 %S A329342 8290,8969,9102,17998,24199,21819,20041,22084,21800,20020,21901,23792, %T A329342 25219,54503,55656,55767,55978,56399,55039,87290,88869,88892,88909, %U A329342 89108,108070,126947,141300,221901,223792,225219,554503,555656,555767,555978,556399,555039 %N A329342 Irregular table whose rows list the nontrivial cycles of the ghost iteration A329201, starting with the smallest member. %C A329342 A329201 consists of adding or subtracting the number whose digits are the differences of adjacent digits of n, depending on its parity. Repdigits A010785 are fixed points of this map, but some numbers enter nontrivial cycles. %C A329342 This sequence lists these cycles, ordered by their smallest member which is always listed first. %C A329342 Sequence A329341 gives the lengths of these cycles, i.e., rows of this table. %C A329342 Whenever all terms of a cycle have the same number of digits and same initial digit, then this digit can be prefixed k times to each term to obtain a different cycle of same length, for any k >= 0. (The corresponding "ghosts" A040115(n) are then the same, so the first differences are also the same and add again up to 0.) This is the case for rows 3, 4, 5, 6, ... of this table. Rows 7, 8, 11, ... are subsequent members of the respective family. We could call "primitive" the cycles which are not obtained from an earlier cycle by duplicating the initial digits. %e A329342 The table starts: %e A329342 n | cycle #n (length = A329341(n)) %e A329342 ---+------------------------------------------------------------------ %e A329342 1 | 8290, 8969, 9102 %e A329342 2 | 17998, 24199, 21819, 20041, 22084, 21800, 20020 %e A329342 3 | 21901, 23792, 25219 %e A329342 4 | 54503, 55656, 55767, 55978, 56399, 55039 %e A329342 5 | 87290, 88869, 88892, 88909, 89108 %e A329342 6 | 108070, 126947, 141300 %e A329342 7 | 221901, 223792, 225219 %e A329342 8 | 554503, 555656, 555767, 555978, 556399, 555039 %e A329342 9 | 741683, 775208, 772880, 767272, 778827, 779892, 782009, 798218, 819835 %e A329342 10 | 810001, 881002, 873900, 859210, 893921, %e A329342 | 910592, 992139, 985013, 971501, 997952, 1000195, 900011 %e A329342 11 | 887290, 888869, 888892, 888909, 889108 %e A329342 12 | 1108070, 1126947, 1141300 %e A329342 13 | 2221901, 2223792, 2225219 %e A329342 14 | 4350630, 4476263, 4507706 %e A329342 15 | 5461741, 5587374, 5618817 %e A329342 16 | 5554503, 5555656, 5555767, 5555978, 5556399, 5555039 %e A329342 17 | 6572852, 6698485, 6729928 %e A329342 18 | 8887290, 8888869, 8888892, 8888909, 8889108 %e A329342 19 | 9071007, 10047114, 11090717, 10890951 %e A329342 20 | 10807007, 12694714, 14130077 %e A329342 21 | 11108070, 11126947, 11141300 %e A329342 22 | 22221901, 22223792, 22225219 %e A329342 23 | 44350630, 44476263, 44507706 %e A329342 24 | 55461741, 55587374, 55618817 %e A329342 25 | 55554503, 55555656, 55555767, 55555978, 55556399, 55555039 %e A329342 26 | 66572852, 66698485, 66729928 %e A329342 27 | 88887290, 88888869, 88888892, 88888909, 88889108 %e A329342 28 | 90710050, 100471105, 110907120, 108909508 %e A329342 29 | 98311327, 99831542, 99679130, 99991953, 99983111, %e A329342 | 99967911, 99936631, 99873599, 99759359, 99534735, 99113393 %e A329342 30 | 108070010, 126947021, 141300742 %e A329342 31 | 110807007, 112694714, 114130077 %e A329342 32 | 111108070, 111126947, 111141300 %e A329342 33 | 222221901, 222223792, 222225219 %e A329342 34 | 329112807, 346914494, 359297549, 384069764, 329606552, %e A329342 | 346972655, 334647245, 335870766, 333553056, 333755407, %e A329342 | 334175554, 335537555, 333513355, 333271335, 333115133, 332910713, 331128951 %e A329342 35 | 444350630, 444476263, 444507706 %e A329342 36 | 555461741, 555587374, 555618817 %e A329342 37 | 555554503, 555555656, 555555767, 555555978, 555556399, 555555039 %e A329342 38 | 666572852, 666698485, 666729928 %e A329342 39 | 829021565, 896942976, 910295697 %e A329342 40 | 888887290, 888888869, 888888892, 888888909, 888889108 %e A329342 41 | 998311327, 999831542, 999679130, 999991953, 999983111, %e A329342 | 999967911, 999936631, 999873599, 999759359, 999534735, 999113393 %o A329342 (PARI) %o A329342 T(n,T=[n])={while(!setsearch(Set(T),n=A329201(n)), T=concat(T,n));T} \\ trajectory; a cycle if n is a member of it. %o A329342 {U=0; M=[]; for(n=9, oo, bittest(U>>=1, 0) && next; if(M && n>M[1], print(T(M[1])); M=M[^1]); t=n; V=U; while( !bittest(U, -n+t=A329201(t)), t>n || next(2); U+=1<<(t-n)); bittest(V, t-n) || #Set(digits(t))==1 || M=setunion(M, [vecmin(T(t))]) )} %Y A329342 Cf. A329341 (row lengths), A329201, A329196 (analog for A329200), A329198. %K A329342 nonn,more,tabf %O A329342 1,1 %A A329342 _M. F. Hasler_, Nov 10 2019 %E A329342 Rows 12 through 41 from _Scott R. Shannon_, Nov 12 2019