This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329344 #11 Nov 18 2019 22:18:21 %S A329344 1,1,1,2,1,2,1,1,1,2,1,4,1,2,6,2,1,2,1,4,6,2,1,3,4,2,1,4,1,5,1,1,6,2, %T A329344 8,4,1,2,6,1,1,1,1,4,5,2,1,3,6,8,6,4,1,2,4,8,6,2,1,3,1,2,3,2,13,12,1, %U A329344 4,6,5,1,3,1,2,5,4,16,12,1,2,6,2,1,2,11,2,6,8,1,10,12,4,6,2,7,6,1,12,10,6,1,12,1,8,4 %N A329344 Number of times most frequent primorial is present in the greedy sum of primorials adding to A108951(n). %C A329344 The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation. %H A329344 Antti Karttunen, <a href="/A329344/b329344.txt">Table of n, a(n) for n = 1..65537</a> %H A329344 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A329344 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A329344 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A329344 a(n) = A328114(A108951(n)) = A051903(A324886(n)). %e A329344 For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 30 + 6 + 6 + 6, and as the most frequent primorial in the sum is 6 = A002110(2), we have a(24) = 3. %t A329344 With[{b = Reverse@ Prime@ Range@ 120}, Array[Max@ IntegerDigits[#, MixedRadix[b]] &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] ] (* _Michael De Vlieger_, Nov 18 2019 *) %o A329344 (PARI) %o A329344 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A329344 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A329344 A328114(n) = { my(s=0, p=2); while(n, s = max(s,(n%p)); n = n\p; p = nextprime(1+p)); (s); }; %o A329344 A329344(n) = A328114(A108951(n)); %o A329344 (PARI) %o A329344 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A329344 A324886(n) = A276086(A108951(n)); %o A329344 A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); %o A329344 A329344(n) = A051903(A324886(n)); %Y A329344 Cf. A002110, A034386, A051903, A108951, A276086, A324886, A324888, A328114, A329040, A329045, A329343, A329348, A329349. %K A329344 nonn %O A329344 1,4 %A A329344 _Antti Karttunen_, Nov 11 2019