cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329344 Number of times most frequent primorial is present in the greedy sum of primorials adding to A108951(n).

This page as a plain text file.
%I A329344 #11 Nov 18 2019 22:18:21
%S A329344 1,1,1,2,1,2,1,1,1,2,1,4,1,2,6,2,1,2,1,4,6,2,1,3,4,2,1,4,1,5,1,1,6,2,
%T A329344 8,4,1,2,6,1,1,1,1,4,5,2,1,3,6,8,6,4,1,2,4,8,6,2,1,3,1,2,3,2,13,12,1,
%U A329344 4,6,5,1,3,1,2,5,4,16,12,1,2,6,2,1,2,11,2,6,8,1,10,12,4,6,2,7,6,1,12,10,6,1,12,1,8,4
%N A329344 Number of times most frequent primorial is present in the greedy sum of primorials adding to A108951(n).
%C A329344 The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation.
%H A329344 Antti Karttunen, <a href="/A329344/b329344.txt">Table of n, a(n) for n = 1..65537</a>
%H A329344 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A329344 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H A329344 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F A329344 a(n) = A328114(A108951(n)) = A051903(A324886(n)).
%e A329344 For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 30 + 6 + 6 + 6, and as the most frequent primorial in the sum is 6 = A002110(2), we have a(24) = 3.
%t A329344 With[{b = Reverse@ Prime@ Range@ 120}, Array[Max@ IntegerDigits[#, MixedRadix[b]] &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] ] (* _Michael De Vlieger_, Nov 18 2019 *)
%o A329344 (PARI)
%o A329344 A034386(n) = prod(i=1, primepi(n), prime(i));
%o A329344 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
%o A329344 A328114(n) = { my(s=0, p=2); while(n, s = max(s,(n%p)); n = n\p; p = nextprime(1+p)); (s); };
%o A329344 A329344(n) = A328114(A108951(n));
%o A329344 (PARI)
%o A329344 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A329344 A324886(n) = A276086(A108951(n));
%o A329344 A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
%o A329344 A329344(n) = A051903(A324886(n));
%Y A329344 Cf. A002110, A034386, A051903, A108951, A276086, A324886, A324888, A328114, A329040, A329045, A329343, A329348, A329349.
%K A329344 nonn
%O A329344 1,4
%A A329344 _Antti Karttunen_, Nov 11 2019