This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329348 #32 Jan 17 2020 23:37:24 %S A329348 1,1,1,2,1,2,1,1,1,2,1,4,1,2,6,2,1,2,1,4,6,2,1,3,2,2,1,4,1,5,1,1,6,2, %T A329348 8,4,1,2,6,1,1,1,1,4,1,2,1,1,1,4,6,4,1,2,4,8,6,2,1,3,1,2,3,2,13,12,1, %U A329348 4,6,5,1,3,1,2,5,4,2,12,1,2,1,2,1,2,11,2,6,8,1,2,6,4,6,2,7,2,1,2,10,1,1,12,1,8,4 %N A329348 The least significant nonzero digit in the primorial base expansion of primorial inflation of n, A108951(n). %C A329348 Number of occurrences of the least primorial present in the greedy sum of primorials adding to A108951(n). %C A329348 The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation. %H A329348 Antti Karttunen, <a href="/A329348/b329348.txt">Table of n, a(n) for n = 1..65537</a> %H A329348 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A329348 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A329348 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A329348 a(n) = A067029(A324886(n)) = A276088(A108951(n)). %F A329348 a(n) <= A324888(n). %F A329348 From _Antti Karttunen_, Jan 15-17 2020: (Start) %F A329348 a(n) = A331188(n) mod A117366(n). %F A329348 a(n) = A001511(A246277(A324886(n))). %F A329348 (End) %e A329348 For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 1*30 + 3*6, and as the factor of the least primorial in the sum is 3, we have a(24) = 3. %o A329348 (PARI) %o A329348 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A329348 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A329348 A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); }; %o A329348 A329348(n) = A276088(A108951(n)); %o A329348 (PARI) %o A329348 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A329348 A324886(n) = A276086(A108951(n)); %o A329348 A067029(n) = if(1==n, 0, factor(n)[1, 2]); \\ From A067029 %o A329348 A329348(n) = A067029(A324886(n)); %o A329348 (PARI) %o A329348 A002110(n) = prod(i=1, n, prime(i)); %o A329348 A329348(n) = if(1==n, n, my(f=factor(n), p=nextprime(1+vecmax(f[, 1]))); prod(i=1, #f~, A002110(primepi(f[i, 1]))^(f[i, 2]-(#f~==i)))%p); \\ _Antti Karttunen_, Jan 15 2020 %Y A329348 Cf. A002110, A034386, A067029, A108951, A117366, A276086, A276088, A324886, A324888, A329040, A329345, A329343, A329344, A329349, A331188, A331289, A331290, A331291. %Y A329348 Cf. also A331292 (the next digit to left of this one), A331293. %K A329348 nonn %O A329348 1,4 %A A329348 _Antti Karttunen_, Nov 11 2019 %E A329348 Name changed by _Antti Karttunen_, Jan 17 2020