cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329349 Number of occurrences of the largest primorial present in the greedy sum of primorials adding to A108951(n).

This page as a plain text file.
%I A329349 #10 Nov 11 2019 18:44:09
%S A329349 1,1,1,2,1,2,1,1,1,2,1,4,1,2,6,2,1,2,1,4,6,2,1,1,4,2,1,4,1,1,1,1,6,2,
%T A329349 2,4,1,2,6,1,1,1,1,4,5,2,1,3,1,8,6,4,1,2,2,8,6,2,1,3,1,2,3,2,1,12,1,4,
%U A329349 6,5,1,1,1,2,2,4,16,12,1,2,6,2,1,2,1,2,6,8,1,10,12,4,6,2,1,6,1,2,2,1,1,12,1,8,1
%N A329349 Number of occurrences of the largest primorial present in the greedy sum of primorials adding to A108951(n).
%C A329349 The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation.
%H A329349 Antti Karttunen, <a href="/A329349/b329349.txt">Table of n, a(n) for n = 1..10000</a>
%H A329349 Antti Karttunen, <a href="/A329349/a329349.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A329349 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A329349 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H A329349 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F A329349 a(n) = A276153(A108951(n)) = A071178(A324886(n)).
%F A329349 a(n) <= A324888(n).
%e A329349 For n = 21 = 3 * 7, A108951(21) = A034386(3) * A034386(7) = 6 * 210, so the factor of the largest primorial present (210) in the greedy sum is 6 (as 1260 = 210 + 210 + 210 + 210 + 210 + 210), thus a(21) = 6.
%e A329349 For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 1*30 + 3*6, and as the factor of the largest primorial in the sum is 1, we have a(24) = 1.
%o A329349 (PARI)
%o A329349 A034386(n) = prod(i=1, primepi(n), prime(i));
%o A329349 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
%o A329349 A276153(n) = { my(e=0, p=2); while(n, e=n%p; n = n\p; p = nextprime(1+p)); (e); };
%o A329349 A329349(n) = A276153(A108951(n));
%o A329349 (PARI)
%o A329349 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A329349 A324886(n) = A276086(A108951(n));
%o A329349 A071178(n) = if(1==n,0,my(es=factor(n)[,2]); es[#es]);
%o A329349 A329349(n) = A071178(A324886(n));
%Y A329349 Cf. A002110, A034386, A071178, A108951, A276086, A276153, A324886, A324888, A329040, A329343, A329344, A329345, A329348.
%K A329349 nonn
%O A329349 1,4
%A A329349 _Antti Karttunen_, Nov 11 2019