This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329354 #20 Mar 03 2023 17:26:57 %S A329354 0,2,3,6,5,17,7,14,12,27,11,45,13,37,38,30,17,62,19,71,52,57,23,101, %T A329354 30,67,39,97,29,162,31,62,80,87,82,162,37,97,94,159,41,220,43,149,137, %U A329354 117,47,213,56,152,122,175,53,197,126,217,136,147,59,410,61,157,187,126,148,336,67,227,164,342,71,362,73,187,213,253,172,394,79 %N A329354 a(n) = Sum_{d|n} d*omega(d). %H A329354 Antti Karttunen, <a href="/A329354/b329354.txt">Table of n, a(n) for n = 1..16384</a> %H A329354 Antti Karttunen, <a href="/A329354/a329354.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %F A329354 a(n) = Sum_{d|n} d*A001221(d). %F A329354 a(n) = A180253(n) - A323599(n). %F A329354 a(n) = A328260(n) + A329375(n). %F A329354 a(n) = Sum_{d|n} (n/d) * sopf(d). - _Wesley Ivan Hurt_, May 24 2021 %F A329354 Dirichlet g.f.: primezeta(s-1) * zeta(s-1) * zeta(s). - _Ilya Gutkovskiy_, Aug 18 2021 %F A329354 Conjecture: Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (log(log(n)) + A077761) / 12. - _Vaclav Kotesovec_, Mar 03 2023 %t A329354 Table[Sum[d*PrimeNu[d], {d, Divisors[n]}], {n, 1, 100}] (* _Vaclav Kotesovec_, Aug 18 2021 *) %o A329354 (PARI) A329354(n) = sumdiv(n,d,omega(d)*d); %Y A329354 Cf. A001221, A013939, A062799, A180253, A323599, A328260, A329375. %K A329354 nonn %O A329354 1,2 %A A329354 _Antti Karttunen_, Nov 15 2019