A329357 Numbers whose reversed binary expansion has co-Lyndon factorization of length 2.
2, 3, 5, 9, 11, 17, 19, 23, 33, 35, 37, 39, 43, 47, 65, 67, 69, 71, 75, 79, 83, 87, 95, 129, 131, 133, 135, 137, 139, 143, 147, 149, 151, 155, 159, 163, 167, 171, 175, 183, 191, 257, 259, 261, 263, 265, 267, 271, 275, 277, 279, 283, 287, 291, 293, 295, 299
Offset: 1
Keywords
Examples
The reversed binary expansion of each term together with their co-Lyndon factorizations: 2: (01) = (0)(1) 3: (11) = (1)(1) 5: (101) = (10)(1) 9: (1001) = (100)(1) 11: (1101) = (110)(1) 17: (10001) = (1000)(1) 19: (11001) = (1100)(1) 23: (11101) = (1110)(1) 33: (100001) = (10000)(1) 35: (110001) = (11000)(1) 37: (101001) = (10100)(1) 39: (111001) = (11100)(1) 43: (110101) = (11010)(1) 47: (111101) = (11110)(1) 65: (1000001) = (100000)(1) 67: (1100001) = (110000)(1) 69: (1010001) = (101000)(1) 71: (1110001) = (111000)(1) 75: (1101001) = (110100)(1) 79: (1111001) = (111100)(1)
Crossrefs
Programs
-
Mathematica
colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And]; colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]]@Last[Select[Range[Length[q]],colynQ[Take[q,#]]&]]]; Select[Range[100],Length[colynfac[Reverse[IntegerDigits[#,2]]]]==2&]
Comments