A329359 Irregular triangle read by rows where row n gives the lengths of the factors in the co-Lyndon factorization of the binary expansion of n.
1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 4, 3, 1, 4, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 5, 2, 2, 1, 2, 3, 2, 1, 1, 1, 5, 4, 1, 5, 3, 1, 1, 5, 4, 1, 5, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 3, 3, 1, 1, 1, 6, 5, 1, 2, 2, 2, 2
Offset: 1
Examples
Triangle begins: 1: (1) 21: (221) 41: (51) 61: (51) 2: (2) 22: (23) 42: (222) 62: (6) 3: (11) 23: (2111) 43: (2211) 63: (111111) 4: (3) 24: (5) 44: (24) 64: (7) 5: (21) 25: (41) 45: (231) 65: (61) 6: (3) 26: (5) 46: (24) 66: (52) 7: (111) 27: (311) 47: (21111) 67: (511) 8: (4) 28: (5) 48: (6) 68: (43) 9: (31) 29: (41) 49: (51) 69: (421) 10: (22) 30: (5) 50: (6) 70: (43) 11: (211) 31: (11111) 51: (411) 71: (4111) 12: (4) 32: (6) 52: (6) 72: (7) 13: (31) 33: (51) 53: (51) 73: (331) 14: (4) 34: (42) 54: (33) 74: (322) 15: (1111) 35: (411) 55: (3111) 75: (3211) 16: (5) 36: (33) 56: (6) 76: (34) 17: (41) 37: (321) 57: (51) 77: (331) 18: (32) 38: (33) 58: (6) 78: (34) 19: (311) 39: (3111) 59: (411) 79: (31111) 20: (5) 40: (6) 60: (6) 80: (7) For example, 45 has binary expansion (101101), with co-Lyndon factorization (10)(110)(1), so row n = 45 is (2,3,1).
Crossrefs
Programs
-
Mathematica
colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And]; colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]]@Last[Select[Range[Length[q]],colynQ[Take[q,#]]&]]]; Table[Length/@colynfac[If[n==0,{},IntegerDigits[n,2]]],{n,30}]
Comments