This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329366 #5 Nov 12 2019 19:24:15 %S A329366 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,47,49,53, %T A329366 59,61,64,67,71,73,79,81,83,89,91,97,101,103,107,109,113,121,125,127, %U A329366 128,131,137,139,149,151,157,163,167,169,173,179,181,191,193,197 %N A329366 Numbers whose distinct prime indices are pairwise indivisible (stable) and pairwise non-relatively prime (intersecting). %C A329366 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A329366 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A partition with no two distinct parts divisible is said to be stable, and a partition with no two distinct parts relatively prime is said to be intersecting, so these are Heinz numbers of stable intersecting partitions. %e A329366 The sequence of terms together with their prime indices begins: %e A329366 1: {} %e A329366 2: {1} %e A329366 3: {2} %e A329366 4: {1,1} %e A329366 5: {3} %e A329366 7: {4} %e A329366 8: {1,1,1} %e A329366 9: {2,2} %e A329366 11: {5} %e A329366 13: {6} %e A329366 16: {1,1,1,1} %e A329366 17: {7} %e A329366 19: {8} %e A329366 23: {9} %e A329366 25: {3,3} %e A329366 27: {2,2,2} %e A329366 29: {10} %e A329366 31: {11} %e A329366 32: {1,1,1,1,1} %e A329366 37: {12} %t A329366 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A329366 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A329366 Select[Range[100],stableQ[Union[primeMS[#]],GCD[#1,#2]==1&]&&stableQ[Union[primeMS[#]],Divisible]&] %Y A329366 Intersection of A316476 and A328867. %Y A329366 Heinz numbers of the partitions counted by A328871. %Y A329366 Replacing "intersecting" with "relatively prime" gives A328677. %Y A329366 Cf. A056239, A112798, A285573, A289509, A303362, A304713, A327393, A328671. %K A329366 nonn %O A329366 1,2 %A A329366 _Gus Wiseman_, Nov 12 2019