cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329371 Dirichlet convolution of the identity function with A246277.

This page as a plain text file.
%I A329371 #11 Nov 12 2019 19:20:36
%S A329371 0,1,1,4,1,8,1,12,5,12,1,28,1,16,11,32,1,37,1,44,15,24,1,80,7,28,19,
%T A329371 60,1,82,1,80,21,36,15,128,1,40,27,128,1,114,1,92,49,48,1,208,9,89,33,
%U A329371 108,1,146,21,176,39,60,1,284,1,64,69,192,25,174,1,140,45,170,1,364,1,76,70,156,21,210,1,336,65,84,1,396,33,88,55,272,1,368,25,188,63
%N A329371 Dirichlet convolution of the identity function with A246277.
%H A329371 Antti Karttunen, <a href="/A329371/b329371.txt">Table of n, a(n) for n = 1..16384</a>
%H A329371 Antti Karttunen, <a href="/A329371/a329371.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A329371 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A329371 a(n) = Sum_{d|n} d * A246277(n/d).
%o A329371 (PARI)
%o A329371 A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
%o A329371 A329371(n) = sumdiv(n,d,(n/d)*A246277(d));
%Y A329371 Cf. A246277.
%Y A329371 Cf. also A305796, A323599, A329347, A329372, A329373.
%K A329371 nonn
%O A329371 1,4
%A A329371 _Antti Karttunen_, Nov 12 2019