cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329382 Product of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

This page as a plain text file.
%I A329382 #44 Jul 08 2022 21:53:45
%S A329382 1,1,1,2,1,2,1,3,4,2,1,3,1,2,4,4,1,6,1,3,4,2,1,4,8,2,9,3,1,6,1,5,4,2,
%T A329382 8,8,1,2,4,4,1,6,1,3,9,2,1,5,16,12,4,3,1,12,8,4,4,2,1,8,1,2,9,6,8,6,1,
%U A329382 3,4,12,1,10,1,2,18,3,16,6,1,5,16,2,1,8,8,2,4,4,1,12,16,3,4,2,8,6,1,24,9,16,1,6,1,4,18
%N A329382 Product of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).
%C A329382 Also the product of parts of the conjugate of the integer partition with Heinz number n, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (3,2) with Heinz number 15 has conjugate (2,2,1) with product a(15) = 4. - _Gus Wiseman_, Mar 27 2022
%H A329382 Antti Karttunen, <a href="/A329382/b329382.txt">Table of n, a(n) for n = 1..10201</a>
%H A329382 Antti Karttunen, <a href="/A329382/a329382.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A329382 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A329382 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F A329382 a(n) = A005361(A108951(n)).
%F A329382 A329605(n) >= a(n) >= A329617(n) >= A329378(n).
%F A329382 a(A019565(n)) = A284001(n).
%F A329382 From _Antti Karttunen_, Jan 14 2020: (Start)
%F A329382 If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > k3 > ... > kx, then a(n) = e(k1)^(k1-k2) * (e(k1)+e(k2))^(k2-k3) * (e(k1)+e(k2)+e(k3))^(k3-k4) * ... * (e(k1)+e(k2)+...+e(kx))^kx.
%F A329382 a(n) = A000005(A331188(n)) = A329605(A052126(n)).
%F A329382 (End)
%F A329382 a(n) = A003963(A122111(n)). - _Gus Wiseman_, Mar 27 2022
%t A329382 Table[Times @@ FactorInteger[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]][[All, -1]], {n, 105}] (* _Michael De Vlieger_, Jan 21 2020 *)
%o A329382 (PARI)
%o A329382 A005361(n) = factorback(factor(n)[, 2]); \\ from A005361
%o A329382 A034386(n) = prod(i=1, primepi(n), prime(i));
%o A329382 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
%o A329382 A329382(n) = A005361(A108951(n));
%o A329382 (PARI) A329382(n) = if(1==n,1,my(f=factor(n),e=0,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m)); \\ _Antti Karttunen_, Jan 14 2020
%Y A329382 Cf. A000005, A005361, A019565, A034386, A108951, A284001, A331188, A329378, A329605, A329617.
%Y A329382 This is the conjugate version of A003963 (product of prime indices).
%Y A329382 The solutions to a(n) = A003963(n) are A325040, counted by A325039.
%Y A329382 The Heinz number of the conjugate partition is given by A122111.
%Y A329382 These are the row products of A321649 and of A321650.
%Y A329382 A000700 counts self-conj partitions, ranked by A088902, complement A330644.
%Y A329382 A008480 counts permutations of prime indices, conjugate A321648.
%Y A329382 A056239 adds up prime indices, row sums of A112798 and of A296150.
%Y A329382 A124010 gives prime signature, sorted A118914, sum A001222.
%Y A329382 A238744 gives the conjugate of prime signature, rank A238745.
%Y A329382 Cf. A000701, A000720, A001221, A046682, A175508, A290822, A303975, A316524, A324850, A352486-A352491, A353570.
%K A329382 nonn
%O A329382 1,4
%A A329382 _Antti Karttunen_, Nov 17 2019