A329396 Numbers k such that the co-Lyndon factorization of the binary expansion of k is uniform.
1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 38, 40, 42, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 96, 98, 100, 104, 106, 108, 112, 114, 116, 118, 120, 122, 124, 126, 127, 128, 136, 140, 142, 144, 160, 164, 168, 170, 192
Offset: 1
Keywords
Examples
The sequence of terms together with their co-Lyndon factorizations begins: 1: (1) = (1) 2: (10) = (10) 3: (11) = (1)(1) 4: (100) = (100) 6: (110) = (110) 7: (111) = (1)(1)(1) 8: (1000) = (1000) 10: (1010) = (10)(10) 12: (1100) = (1100) 14: (1110) = (1110) 15: (1111) = (1)(1)(1)(1) 16: (10000) = (10000) 20: (10100) = (10100) 24: (11000) = (11000) 26: (11010) = (11010) 28: (11100) = (11100) 30: (11110) = (11110) 31: (11111) = (1)(1)(1)(1)(1) 32: (100000) = (100000) 36: (100100) = (100)(100) 38: (100110) = (100)(110) 40: (101000) = (101000) 42: (101010) = (10)(10)(10)
Crossrefs
Numbers whose binary expansion has uniform Lyndon factorization are A023758.
Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose binary expansion is co-Lyndon are A275692.
Numbers whose trimmed binary expansion has Lyndon and co-Lyndon factorizations of equal lengths are A329395.
Programs
-
Mathematica
colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And]; colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]]@Last[Select[Range[Length[q]],colynQ[Take[q,#]]&]]]; Select[Range[100],SameQ@@Length/@colynfac[IntegerDigits[#,2]]&]
Comments