A329400 Length of the co-Lyndon factorization of the binary expansion of n with the most significant (first) digit removed.
0, 1, 1, 2, 2, 1, 2, 3, 3, 2, 3, 1, 2, 1, 3, 4, 4, 3, 4, 2, 3, 2, 4, 1, 2, 2, 3, 1, 2, 1, 4, 5, 5, 4, 5, 3, 4, 3, 5, 2, 3, 3, 4, 2, 3, 2, 5, 1, 2, 2, 3, 1, 3, 2, 4, 1, 2, 1, 3, 1, 2, 1, 5, 6, 6, 5, 6, 4, 5, 4, 6, 3, 4, 4, 5, 3, 4, 3, 6, 2, 3, 3, 4, 2, 4, 3, 5
Offset: 1
Keywords
Examples
Decapitated binary expansions of 1..20 together with their co-Lyndon factorizations: 1: () = 2: (0) = (0) 3: (1) = (1) 4: (00) = (0)(0) 5: (01) = (0)(1) 6: (10) = (10) 7: (11) = (1)(1) 8: (000) = (0)(0)(0) 9: (001) = (0)(0)(1) 10: (010) = (0)(10) 11: (011) = (0)(1)(1) 12: (100) = (100) 13: (101) = (10)(1) 14: (110) = (110) 15: (111) = (1)(1)(1) 16: (0000) = (0)(0)(0)(0) 17: (0001) = (0)(0)(0)(1) 18: (0010) = (0)(0)(10) 19: (0011) = (0)(0)(1)(1) 20: (0100) = (0)(100)
Crossrefs
The non-"co" version is A211097.
The version involving all digits is A329312.
Lyndon and co-Lyndon compositions are (both) counted by A059966.
Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose binary expansion is co-Lyndon are A275692.
Numbers whose decapitated binary expansion is co-Lyndon are A329401.
Programs
-
Mathematica
colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And]; colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]]@Last[Select[Range[Length[q]],colynQ[Take[q,#]]&]]]; Table[If[n==0,0,Length[colynfac[Rest[IntegerDigits[n,2]]]]],{n,30}]
Comments