cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329401 Numbers whose binary expansion without the most significant (first) digit is a co-Lyndon word.

This page as a plain text file.
%I A329401 #4 Nov 16 2019 13:49:13
%S A329401 2,3,6,12,14,24,28,30,48,52,56,58,60,62,96,104,112,114,116,120,122,
%T A329401 124,126,192,200,208,212,224,226,228,232,234,236,240,242,244,246,248,
%U A329401 250,252,254,384,400,416,420,424,448,450,452,456,458,464,466,468,472,474
%N A329401 Numbers whose binary expansion without the most significant (first) digit is a co-Lyndon word.
%C A329401 A co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations.
%e A329401 The sequence of terms together with their binary expansions begins:
%e A329401     2: (1,0)
%e A329401     3: (1,1)
%e A329401     6: (1,1,0)
%e A329401    12: (1,1,0,0)
%e A329401    14: (1,1,1,0)
%e A329401    24: (1,1,0,0,0)
%e A329401    28: (1,1,1,0,0)
%e A329401    30: (1,1,1,1,0)
%e A329401    48: (1,1,0,0,0,0)
%e A329401    52: (1,1,0,1,0,0)
%e A329401    56: (1,1,1,0,0,0)
%e A329401    58: (1,1,1,0,1,0)
%e A329401    60: (1,1,1,1,0,0)
%e A329401    62: (1,1,1,1,1,0)
%e A329401    96: (1,1,0,0,0,0,0)
%e A329401   104: (1,1,0,1,0,0,0)
%e A329401   112: (1,1,1,0,0,0,0)
%e A329401   114: (1,1,1,0,0,1,0)
%e A329401   116: (1,1,1,0,1,0,0)
%e A329401   120: (1,1,1,1,0,0,0)
%t A329401 colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
%t A329401 Select[Range[2,100],colynQ[Rest[IntegerDigits[#,2]]]&]
%Y A329401 The version involving all digits is A275692.
%Y A329401 Binary Lyndon/co-Lyndon words are A001037.
%Y A329401 A ranking of binary co-Lyndon words is A329318
%Y A329401 Cf. A059966, A060223, A102659, A211097, A211100, A328594, A328596, A329312, A329325, A329326, A329359, A329395, A329396, A329400.
%K A329401 nonn
%O A329401 1,1
%A A329401 _Gus Wiseman_, Nov 16 2019