This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329404 #34 Dec 27 2024 08:45:27 %S A329404 0,1,4,21,20,65,48,133,88,225,140,341,204,481,280,645,368,833,468, %T A329404 1045,580,1281,704,1541,840,1825,988,2133,1148,2465,1320,2821,1504, %U A329404 3201,1700,3605,1908,4033,2128,4485,2360,4961 %N A329404 Interleave 2*n*(3*n-1), (2*n+1)*(6*n+1) for n >= 0. %C A329404 a(n) + a(n+3) = 21, 21, 69, 69, 153, 153, ... %C A329404 Hexagonal spiral for A026741: %C A329404 . %C A329404 33--17--35--18 %C A329404 / %C A329404 16 8--17---9--19 %C A329404 / / \ %C A329404 31 15 5---3---7 10 %C A329404 / / / \ \ %C A329404 15 7 2 0===1===4==21==> %C A329404 \ \ \ / / / %C A329404 29 13 3---1 9 11 %C A329404 \ \ / / %C A329404 14 6--11---5 23 %C A329404 \ / %C A329404 27--13--25--12 %C A329404 . %C A329404 a(n) is the horizontal sequence from 0. %H A329404 Colin Barker, <a href="/A329404/b329404.txt">Table of n, a(n) for n = 0..1000</a> %H A329404 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1). %F A329404 a(n) = n * A165355(n-1). %F A329404 From _Colin Barker_, Nov 13 2019: (Start) %F A329404 G.f.: x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3). %F A329404 a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5. %F A329404 a(n) = (1/4)*(-1)*((-3 + (-1)^n)*n*(-2+3*n)). (End) %F A329404 From _Amiram Eldar_, Dec 27 2024: (Start) %F A329404 Sum_{n>=1} 1/a(n) = Pi/(8*sqrt(3)) + 9*log(3)/8. %F A329404 Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi/(8*sqrt(3)) - 3*log(3)/8. (End) %t A329404 LinearRecurrence[{0,3,0,-3,0,1},{0,1,4,21,20,65},100] (* _Paolo Xausa_, Nov 13 2023 *) %o A329404 (PARI) concat(0, Vec(x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3) + O(x^45))) \\ _Colin Barker_, Nov 13 2019 %Y A329404 Cf. A005449, A014641, A026741, A033579, A165355. %K A329404 nonn,easy %O A329404 0,3 %A A329404 _Paul Curtz_, Nov 13 2019