cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329417 Carmichael numbers m that have at least 3 prime factors p such that (p-1)*p^2 divides m-p.

Original entry on oeis.org

12876480001, 102293818705, 162303632569, 639554081761, 783962120161, 3224063844001, 4553777859841, 10276904735461, 40867660260505, 51496980091921, 51641004415105, 52412615611201, 52933062609505, 73892907966241, 97388953462801, 107862864807061, 182236335107905, 210587050134721
Offset: 1

Views

Author

Amiram Eldar and Daniel Suteu, Nov 29 2019

Keywords

Comments

In 1950, Giuga conjectured that there are no composite numbers n for which 1^(n-1) + 2^(n-1) + ... + (n-1)^(n-1) == -1 (mod n). If such a number exists, then it must be a Carmichael number n such that (p-1)*p^2 divides n-p for every prime p dividing n.

Examples

			m = 12876480001 is a term because it is a Carmichael number, and it has at least 3 prime factors p, {7, 11, 37}, such that (p-1)*p^2 divides m-p.
		

References

  • Giuseppe Giuga, Su una presumibile proprietà caratteristica dei numeri primi (in Italian), Istituto Lombardo Scienze e Lettere, Rendiconti di Classe di scienze matematiche e naturali, Vol. 83 (1950), pp. 511-528.

Crossrefs

Cf. A002997.

Programs