This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329429 #10 Dec 27 2019 16:39:50 %S A329429 1,1,1,2,2,1,5,8,8,4,1,26,80,144,168,138,80,32,8,1,677,4160,13888, %T A329429 31776,54792,74624,82432,74944,56472,35296,18208,7664,2580,672,128,16, %U A329429 1,458330,5632640,36109952,158572864,531441232,1439520512,3264101376,6342205824 %N A329429 Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments. %C A329429 Let f(x) = x^2 + 1, u(0,x) = 1, u(n,x) = f(u(n-1,x)), and p(n,x) = u(n,sqrt(x)). Except for the first term, the sequence (p(n,0)) = (1, 1, 5, 26, 677, ...) is found in A003095 and A008318. This is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889. %D A329429 L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403. %F A329429 p(n,0) = (1, 1, 2, 5, 26, 677, 458330, ...) %F A329429 p(n,1) = (1, 2, 5, 26, 677, 458330, ...) %F A329429 p(n,2) = (2, 5, 26, 677, 458330, ...) %F A329429 p(n,5) = (5, 26, 677, 458330, ...) %F A329429 p(n,26) = (26, 677, 458330, ...), etc.; %F A329429 that is, p(n,p(k,0)) = p(n+k-2,0); there are similar identities for other sequences p(n,h). %e A329429 Rows 0..4: %e A329429 1; %e A329429 1, 1; %e A329429 2, 2, 1; %e A329429 5, 8, 8, 4, 1; %e A329429 26, 80, 144, 168, 138, 80, 32, 8, 1. %e A329429 Rows 0..4, the polynomials u(n,x): %e A329429 1, %e A329429 1 + x^2, %e A329429 2 + 2 x^2 + x^4, %e A329429 5 + 8 x^2 + 8 x^4 + 4 x^6 + x^8, %e A329429 26 + 80 x^2 + 144 x^4 + 168 x^6 + 138 x^8 + 80 x^10 + 32 x^12 + 8 x^14 + x^16. %t A329429 f[x_] := x^2 + 1; u[0, x_] := 1; %t A329429 u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]] %t A329429 Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329429 polynomials u(n,x) *) %t A329429 Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 7}] (* A329429 array *) %Y A329429 Cf. A003095, A008318, A329430, A329431, A329432, A329433. %K A329429 nonn,tabf %O A329429 0,4 %A A329429 _Clark Kimberling_, Nov 13 2019