This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329430 #7 Jun 19 2025 23:51:39 %S A329430 1,1,1,2,3,3,1,9,36,90,147,171,144,87,36,9,1,730,8748,56862,257337, %T A329430 895941,2528172,5967108,12025098,20984508,32024268,43036029,51168267, %U A329430 53983503,50609772,42164064,31176036,20403009,11768247,5946156,2610171,984420,314262,83214,17766,2934,351,27,1 %N A329430 Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments. %C A329430 Let f(x) = x^3 + 1, u(0,x) = 1, u(n,x) = f(u(n-1),x), and p(n,x) = u(n,sqrt(x)). %C A329430 Then the sequence (p(n,0)) = (1,1,2,9,730, ... ) is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889. %D A329430 L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403. %e A329430 Rows 0..3: %e A329430 1; %e A329430 1, 1; %e A329430 2, 3, 3, 1; %e A329430 9, 36, 90, 147, 171, 144, 87, 36, 9, 1. %e A329430 Rows 0..3, the polynomials u(n,x): %e A329430 1; %e A329430 1 + x^3; %e A329430 2 + 3 x^3 + 3 x^6 + x^9; %e A329430 9 + 36 x^3 + 90 x^6 + 147 x^9 + 171 x^12 + 144 x^15 + 87 x^18 + 36 x^21 + 9 x^24 + x^27. %t A329430 f[x_] := x^3 + 1; u[0, x_] := 1; %t A329430 u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]] %t A329430 Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329430 polynomials u(n,x) *) %t A329430 Table[CoefficientList[u[n, x^(1/3)], x], {n, 0, 5}] (* A329430 array *) %Y A329430 Cf. A329429, A329431, A329432, A329433. %K A329430 nonn,tabf %O A329430 0,4 %A A329430 _Clark Kimberling_, Nov 23 2019