cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329437 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} 1 / (1 - x^(k*prime(j)))).

This page as a plain text file.
%I A329437 #5 Nov 13 2019 15:09:30
%S A329437 0,1,1,2,2,4,3,5,5,8,6,12,9,14,15,19,17,27,23,35,34,42,40,61,54,70,72,
%T A329437 92,87,121,111,143,147,175,180,232,219,268,282,340,336,419,413,499,
%U A329437 523,598,614,752,747,879,917,1058,1083,1280,1306,1515,1576,1783,1850
%N A329437 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} 1 / (1 - x^(k*prime(j)))).
%C A329437 Inverse Moebius transform of A000607.
%F A329437 G.f.: Sum_{k>=1} A000607(k) * x^k / (1 - x^k).
%F A329437 a(n) = Sum_{d|n} A000607(d).
%t A329437 nmax = 59; CoefficientList[Series[Sum[-1 + Product[1/(1 - x^(k Prime[j])), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%Y A329437 Cf. A000607, A047966, A047968, A329438.
%K A329437 nonn
%O A329437 1,4
%A A329437 _Ilya Gutkovskiy_, Nov 13 2019