cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329439 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} 1 / (1 - x^(k*j^2))).

This page as a plain text file.
%I A329439 #4 Nov 13 2019 15:09:42
%S A329439 1,2,2,4,3,5,3,7,6,8,5,12,7,10,10,15,10,19,11,22,17,20,15,31,22,28,27,
%T A329439 35,27,44,29,46,40,48,43,69,47,61,58,80,61,89,67,93,92,97,85,129,101,
%U A329439 131,118,146,125,172,142,182,166,191,170,241,193,231,230
%N A329439 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} 1 / (1 - x^(k*j^2))).
%C A329439 Inverse Moebius transform of A001156.
%F A329439 G.f.: Sum_{k>=1} A001156(k) * x^k / (1 - x^k).
%F A329439 a(n) = Sum_{d|n} A001156(d).
%t A329439 nmax = 63; CoefficientList[Series[Sum[-1 + Product[1/(1 - x^(k j^2)), {j, 1, Floor[nmax^(1/2)] + 1}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%Y A329439 Cf. A001156, A047966, A047968.
%K A329439 nonn
%O A329439 1,2
%A A329439 _Ilya Gutkovskiy_, Nov 13 2019