This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329443 #11 Nov 15 2019 21:17:00 %S A329443 0,1,1,1,1,1,2,1,1,1,2,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1, %T A329443 2,1,2,1,1,1,2,1,3,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,2,1,4,1,1,1,1,1,2,1, %U A329443 2,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,3,1,2 %N A329443 a(n) is the GCD of the binary representation of n interpreted in any numeric base. %H A329443 Rémy Sigrist, <a href="/A329443/b329443.txt">Table of n, a(n) for n = 0..10000</a> %F A329443 k divides a(A329000(k)) for any k > 0. %e A329443 For n = 42: %e A329443 - the binary representation of 42 is "101010", %e A329443 - the corresponding interpretations in the first bases b, alongside their GCD, are: %e A329443 b b+b^3+b^5 GCD %e A329443 -- --------- --- %e A329443 2 42 42 %e A329443 3 273 21 %e A329443 4 1092 21 %e A329443 5 3255 21 %e A329443 6 7998 3 %e A329443 - as b + b^3 + b^5 is always divisible by 3, we have a(42) = 3. %o A329443 (PARI) a(n) = my (g=n, d=binary(n)); for (b=3, oo, g = gcd(g, fromdigits(d,b)); if (g < b, return (g))) %Y A329443 Cf. A329000, A329126. %K A329443 nonn,base %O A329443 0,7 %A A329443 _Rémy Sigrist_, Nov 13 2019