A329451 Maximum number of pieces that can be captured during one move on an n X n board according to the international draughts capture rules.
0, 0, 0, 1, 1, 4, 5, 9, 10, 16, 19, 25, 28, 36, 41, 49, 54, 64, 71, 81, 88, 100, 109, 121, 130, 144, 155, 169, 180, 196, 209, 225, 238, 256, 271, 289, 304, 324, 341, 361, 378, 400, 419, 441, 460, 484, 505, 529, 550, 576, 599, 625, 648, 676, 701, 729, 754, 784
Offset: 0
Keywords
Examples
It is possible to capture in a single move 19 opposing pieces on a 10 X 10 board, but not one more, so a(10) = 19.
Links
- Stéphane Rézel, Table of n, a(n) for n = 0..1000
- Fabien Gigante, Solution to Problem J122 La grande rafle de la dame, Diophante, 2009 (in French).
- Stéphane Rézel, Solution to Problem J128 La méga-rafle de la dame, Diophante, 2020 (in French).
- World Draughts Federation, Official rules for international draughts.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Programs
-
PARI
a(n) = if(n<5, floor(n/3), (n^2 - 2*n + if(n%2, 1, 2*(n%4) - 8))/4)
Formula
a(2*t+1) = t^2 = A000290(t).
a(4*t+6) = 4*t^2 + 10*t + 5 = A125202(t+2).
a(4*t+8) = 4*t^2 + 14*t + 10 = A059193(t+2).
a(0) = a(2) = 0; a(4) = 1.
Recurrence: For t >= 1, a(2*t+1) = a(2*t-1) + 2*t - 1;
For t >= 1, a(4*t+3) = a(4*t+2) + 2*t + 2; a(4*t+2) = a(4*t+1) + 2*t - 1;
For t >= 2, a(4*t+1) = a(4*t) + 2*t + 2; a(4*t) = a(4*t-1) + 2*t - 3.
From Colin Barker, Nov 14 2019: (Start)
G.f.: x^3*(1 - x + 3*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x)*(1 + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>10.
(End)
Comments