A329455 There are exactly three primes in {a(n+i) + a(n+j), 0 <= i < j <= 4} for any n >= 0: lexicographically earliest such sequence of distinct nonnegative integers.
0, 1, 2, 4, 8, 6, 3, 10, 14, 11, 5, 9, 15, 26, 12, 17, 13, 7, 18, 16, 20, 21, 19, 23, 27, 40, 22, 31, 24, 25, 29, 28, 30, 32, 33, 39, 34, 36, 35, 38, 41, 46, 37, 43, 48, 42, 55, 47, 44, 45, 52, 49, 50, 53, 56, 58, 54, 57, 51, 73, 76, 61, 59, 63, 64, 68, 60, 69, 67, 62, 65, 66, 70, 71, 72, 79, 77, 74, 81, 86, 78, 89, 82, 85, 80, 99, 84, 83, 75, 92, 87, 88, 90, 91, 93, 94, 100
Offset: 0
Keywords
Examples
We start with a(0) = 0, a(1) = 1, a(2) = 2, the smallest possibilities which do not lead to a contradiction. Now there are already 2 primes, 0 + 2 and 1 + 2, among the pairwise sums, so the next term must generate exactly one further prime. It appears that a(3) = 4 is the smallest possible choice. Then there are 3 primes among the pairwise sums using {0, 1, 2, 4}, and the next term must not produce an additional prime as sum with these. The terms 0 and 1 exclude primes and (primes - 1). We find that a(4) = 8 is the smallest possibility. Then there are 2 primes (1+2 and 1+4) among the pairwise sums using {1, 2, 4, 8}, and the next term must produce exactly one additional prime as sum with these terms. We find that a(5) = 6 is the smallest possibility (since 5+2 and 5+8 would give 2 primes).
Links
- Eric Angelini, Prime sums from neighbouring terms, personal blog "Cinquante signes" (and post to the SeqFan list), Nov. 11, 2019.
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of html file, with permission]
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of pdf file, with permission]
Crossrefs
Cf. A329454 (3 primes among a(n+i)+a(n+j), 0 <= i < j <= 3).
Cf. A329452 (2 primes among a(n+i)+a(n+j), 0 <= i < j <= 3), A329453 (2 primes among a(n+i)+a(n+j), 0 <= i < j <= 4).
Cf. A329333 (1 odd prime among a(n+i)+a(n+j), 0 <= i < j <= 2), A329450 (0 primes among a(n+i)+a(n+j), 0 <= i < j <= 2).
Cf. A329405 ff: variants defined for positive integers.
Programs
-
PARI
A329455(n, show=0, o=0, N=3, M=4, p=[], U, u=o)={for(n=o, n-1, show>0&& print1(o", "); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p
Comments