This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329467 #4 Nov 15 2019 21:35:56 %S A329467 1,1,3,5,10,16,31,47,81,126,204,308,487,720,1098,1613,2395,3461,5061, %T A329467 7213,10362,14633,20712,28926,40497,56000,77527,106349,145791,198339, %U A329467 269678,364106,491125,658708,882077,1175392,1563884,2071363,2739095,3608040,4744058,6216087 %N A329467 Expansion of Product_{i>=1, j>=1} (1 + x^(i*j)) * (1 + x^(2*i*j)). %C A329467 Weigh transform of A069735. %F A329467 G.f.: Product_{i>=1, j>=1} (1 + x^(2*i*j)) / (1 - x^(i*(2*j - 1))). %F A329467 G.f.: Product_{k>=1} ((1 - x^(4*k)) / (1 - x^k))^A000005(k). %F A329467 G.f.: Product_{k>=1} (1 + x^k)^A069735(k). %t A329467 nmax = 41; CoefficientList[Series[Product[((1 - x^(4 k))/(1 - x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] %t A329467 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d If[EvenQ[d], DivisorSigma[0, d] + DivisorSigma[0, d/2], DivisorSigma[0, d]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 41}] %Y A329467 Cf. A000005, A001935, A006171, A069735, A107742, A320245. %K A329467 nonn %O A329467 0,3 %A A329467 _Ilya Gutkovskiy_, Nov 13 2019