cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329475 a(n) = Sum_{k=0..n} C(n,k)^2*T(k)*T(n-k), where T(k) = A002426(k) is the coefficient of x^k in the expansion of (x^2+x+1)^k.

Original entry on oeis.org

1, 2, 10, 68, 586, 5252, 49204, 475400, 4723786, 47937812, 494786260, 5177188040, 54794164660, 585565913480, 6309889976680, 68484312535568, 747985368753226, 8214968193003860, 90669516557975524, 1005156080857529768, 11187435500257898836, 124964856185950621832
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 13 2019

Keywords

Comments

The author introduced this sequence in arXiv:1911.05456 and made the following conjecture.
Conjecture: Let p be an odd prime and let S = Sum_{k=0..p-1}a(k)/(-4)^k. If p == 1 (mod 12) and p = x^2 + 9*y^2 with x and y integers, then S == 4*x^2-2*p (mod p^2). If p == 5 (mod 12) and p = x^2 + y^2 with x == y (mod 3), then S == 4*x*y (mod p^2). If p == 3 (mod 4), then S == 0 (mod p^2).
Note that if p > 3 is a prime, then a(p-1) == Sum_{k=0..p-1} T(k)*T(p-1-k) == Legendre(p/3)*Sum_{k=0..p-1}T(k)^2/(-3)^k == 1 (mod p) by (1.7) and (2.3) of the author's 2014 paper in Sci. China Math.

Examples

			a(1) = 2 since Sum_{k=0,1} C(1,k)^2*T(k)*T(1-k) = C(1,0)^2*T(0)*T(1) + C(1,1)^2*T(1)*T(0) = 2*T(0)*T(1) = 2*1*1 = 2.
		

Crossrefs

Programs

  • Mathematica
    T[0]=1; T[1]=1; T[n_]:=T[n]=((2n-1)T[n-1]+3*(n-1)*T[n-2])/n;
    a[n_]:=a[n]=Sum[Binomial[n,k]^2*T[k]*T[n-k],{k,0,n}];
    Table[a[n],{n,0,21}]

Formula

a(n) ~ (3/2)*12^n/(n*Pi)^(3/2) as n tends to the infinity.