A329478 a(n) = (Sum_{k=0..n-1}(-1)^k*(15*k+8)*beta(k)*t(k))/(2*n), where beta(k) = A005258(k), and t(k) is the coefficient of x^k in the expansion of (x^2+4*x-1)^k.
4, -67, 1640, -37725, 565296, 11056402, -1580442016, 96102180805, -4456155445400, 168095261788962, -4821193706309376, 61671590987433918, 4332508360801598880, -462368336475965777100, 28320921191994637110240, -1347995180149692947542005, 51430890880452230248836840
Offset: 1
Keywords
Examples
a(1) = ((-1)^0*(15*0+8)*beta(0)*t(0))/(2*1) = (1*8*1*1)/2 = 4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Characterizing rational Ramanujan-type series for 1/Pi via congruences, arXiv:1911.05456 [math.NT], 2019.
Programs
-
Mathematica
T[b_,c_,0]=1;T[b_,c_,1]=b;T[b_,c_,n_]:=T[b,c,n]=(b(2n-1)T[b,c,n-1]-(b^2-4c)(n-1)T[b,c,n-2])/n; beta[n_]:=beta[n]=Sum[Binomial[n,k]^2*Binomial[n+k,k],{k,0,n}]; a[n_]:=a[n]=Sum[(-1)^k*(15k+8)*beta[k]*T[4,-1,k],{k,0,n-1}]/(2*n); Table[a[n],{n,1,17}]
Comments