A329479 Number of degree n polynomials f with all nonzero coefficients equal to 1 such that f(k) is divisible by 3 for all integers k.
0, 0, 0, 0, 1, 2, 6, 15, 30, 66, 121, 242, 462, 903, 1806, 3570, 7225, 14450, 29070, 58311, 116622, 233586, 466489, 932978, 1864590, 3727815, 7455630, 14908530, 29822521, 59645042, 119301006, 238612935, 477225870, 954473586, 1908903481, 3817806962, 7635526542
Offset: 1
Keywords
Examples
For n = 7, the a(7) = 6 (0,1)-polynomials of degree seven such that f(0) = f(1) = f(2) = 0 (mod 3) are x^7 + x^5 + x^3, x^7 + x^6 + x^5 + x^4 + x^3 + x^2, x^7 + x^5 + x, x^7 + x^3 + x, x^7 + x^6 + x^5 + x^4 + x^2 + x, and x^7 + x^6 + x^4 + x^3 + x^2 + x.
Links
- Peter Kagey, Table of n, a(n) for n = 1..1000
Comments